Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline

In recent years, acoustic emission (AE) has been widely used in pipeline operation safety monitoring and pipeline integrity maintenance. However, the diversity of cracks in the weld joints of pipelines leads to the complexity of time-varying acoustic emission signals, which limits the monitoring acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2024-04, Vol.68 (4), p.879-891
Hauptverfasser: Huang, Jing, Zhang, Zhifen, Qin, Rui, Yu, Yanlong, Li, Yongjie, Wen, Guangrui, Cheng, Wei, Chen, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 891
container_issue 4
container_start_page 879
container_title Welding in the world
container_volume 68
creator Huang, Jing
Zhang, Zhifen
Qin, Rui
Yu, Yanlong
Li, Yongjie
Wen, Guangrui
Cheng, Wei
Chen, Xuefeng
description In recent years, acoustic emission (AE) has been widely used in pipeline operation safety monitoring and pipeline integrity maintenance. However, the diversity of cracks in the weld joints of pipelines leads to the complexity of time-varying acoustic emission signals, which limits the monitoring accuracy in practical applications. Therefore, a pipeline weld crack leakage monitoring system based on acoustic emission data image coding and deep learning model is proposed in this paper. Specifically, firstly, based on Markov transition field, the leakage signal collected by the AE monitoring system is encoded into two-dimensional image data, and the multi-dimensional phase space trajectory of the signal is revealed while strengthening the correlation and time dependence between the time series sampling points. Then, a residual Swin transformer network model is constructed to obtain useful information from AE coding images and identify different leakage conditions. Finally, experiments with different leakage states are designed to verify the superiority of the proposed method in multiple evaluation indexes, and the recognition accuracy rate reaches 97.86%. The comparison experiment with other methods further proves that the proposed monitoring strategy can be deployed online to maintain the safety of weld pipeline operation.
doi_str_mv 10.1007/s40194-023-01632-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973143960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973143960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-162c93d470382d4399df5bbfb2d4818d0ee032276da4e6db2f05520ef7ab9223</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAz9GbpEubRxn-g4Ew9x7S5mZ065qatAy_vZ0VfPPhcrlwzrmcHyG3HO45QP6QMuA6YyAkA66kYPyMzHiRF0wppc_JDCCTTIiiuCRXKe0AQI8zI-s1ptoNtqEfx7qlfbRt8iEeMLLSJnT0iI2jVbTVnjZo93aL9BDaug-xbrc0eNpFTGmISLu6w6Zu8ZpceNskvPndc7J5ftosX9nq_eVt-bhileS6Z1yJSkuX5SAL4TKptfOLsvTleBS8cIAIUohcOZuhcqXwsFgIQJ_bUgsh5-Ruiu1i-Bww9WYXhtiOH43QueRjooJRJSZVFUNKEb3pYn2w8ctwMCd0ZkJnRnTmB53ho0lOptSdWmL8i_7H9Q0T1HGt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973143960</pqid></control><display><type>article</type><title>Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline</title><source>SpringerLink</source><creator>Huang, Jing ; Zhang, Zhifen ; Qin, Rui ; Yu, Yanlong ; Li, Yongjie ; Wen, Guangrui ; Cheng, Wei ; Chen, Xuefeng</creator><creatorcontrib>Huang, Jing ; Zhang, Zhifen ; Qin, Rui ; Yu, Yanlong ; Li, Yongjie ; Wen, Guangrui ; Cheng, Wei ; Chen, Xuefeng</creatorcontrib><description>In recent years, acoustic emission (AE) has been widely used in pipeline operation safety monitoring and pipeline integrity maintenance. However, the diversity of cracks in the weld joints of pipelines leads to the complexity of time-varying acoustic emission signals, which limits the monitoring accuracy in practical applications. Therefore, a pipeline weld crack leakage monitoring system based on acoustic emission data image coding and deep learning model is proposed in this paper. Specifically, firstly, based on Markov transition field, the leakage signal collected by the AE monitoring system is encoded into two-dimensional image data, and the multi-dimensional phase space trajectory of the signal is revealed while strengthening the correlation and time dependence between the time series sampling points. Then, a residual Swin transformer network model is constructed to obtain useful information from AE coding images and identify different leakage conditions. Finally, experiments with different leakage states are designed to verify the superiority of the proposed method in multiple evaluation indexes, and the recognition accuracy rate reaches 97.86%. The comparison experiment with other methods further proves that the proposed monitoring strategy can be deployed online to maintain the safety of weld pipeline operation.</description><identifier>ISSN: 0043-2288</identifier><identifier>EISSN: 1878-6669</identifier><identifier>DOI: 10.1007/s40194-023-01632-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic emission ; Acoustics ; Chemistry and Materials Science ; Image coding ; Intelligent Welding Manufacturing ; Leakage ; Materials Science ; Metallic Materials ; Monitoring ; Monitoring systems ; Research Paper ; Safety ; Solid Mechanics ; Theoretical and Applied Mechanics ; Time dependence ; Transformers ; Welded joints</subject><ispartof>Welding in the world, 2024-04, Vol.68 (4), p.879-891</ispartof><rights>International Institute of Welding 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-162c93d470382d4399df5bbfb2d4818d0ee032276da4e6db2f05520ef7ab9223</citedby><cites>FETCH-LOGICAL-c319t-162c93d470382d4399df5bbfb2d4818d0ee032276da4e6db2f05520ef7ab9223</cites><orcidid>0000-0003-2086-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40194-023-01632-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40194-023-01632-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Zhang, Zhifen</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Yu, Yanlong</creatorcontrib><creatorcontrib>Li, Yongjie</creatorcontrib><creatorcontrib>Wen, Guangrui</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><title>Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline</title><title>Welding in the world</title><addtitle>Weld World</addtitle><description>In recent years, acoustic emission (AE) has been widely used in pipeline operation safety monitoring and pipeline integrity maintenance. However, the diversity of cracks in the weld joints of pipelines leads to the complexity of time-varying acoustic emission signals, which limits the monitoring accuracy in practical applications. Therefore, a pipeline weld crack leakage monitoring system based on acoustic emission data image coding and deep learning model is proposed in this paper. Specifically, firstly, based on Markov transition field, the leakage signal collected by the AE monitoring system is encoded into two-dimensional image data, and the multi-dimensional phase space trajectory of the signal is revealed while strengthening the correlation and time dependence between the time series sampling points. Then, a residual Swin transformer network model is constructed to obtain useful information from AE coding images and identify different leakage conditions. Finally, experiments with different leakage states are designed to verify the superiority of the proposed method in multiple evaluation indexes, and the recognition accuracy rate reaches 97.86%. The comparison experiment with other methods further proves that the proposed monitoring strategy can be deployed online to maintain the safety of weld pipeline operation.</description><subject>Acoustic emission</subject><subject>Acoustics</subject><subject>Chemistry and Materials Science</subject><subject>Image coding</subject><subject>Intelligent Welding Manufacturing</subject><subject>Leakage</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Research Paper</subject><subject>Safety</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><subject>Transformers</subject><subject>Welded joints</subject><issn>0043-2288</issn><issn>1878-6669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeAz9GbpEubRxn-g4Ew9x7S5mZ065qatAy_vZ0VfPPhcrlwzrmcHyG3HO45QP6QMuA6YyAkA66kYPyMzHiRF0wppc_JDCCTTIiiuCRXKe0AQI8zI-s1ptoNtqEfx7qlfbRt8iEeMLLSJnT0iI2jVbTVnjZo93aL9BDaug-xbrc0eNpFTGmISLu6w6Zu8ZpceNskvPndc7J5ftosX9nq_eVt-bhileS6Z1yJSkuX5SAL4TKptfOLsvTleBS8cIAIUohcOZuhcqXwsFgIQJ_bUgsh5-Ruiu1i-Bww9WYXhtiOH43QueRjooJRJSZVFUNKEb3pYn2w8ctwMCd0ZkJnRnTmB53ho0lOptSdWmL8i_7H9Q0T1HGt</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Huang, Jing</creator><creator>Zhang, Zhifen</creator><creator>Qin, Rui</creator><creator>Yu, Yanlong</creator><creator>Li, Yongjie</creator><creator>Wen, Guangrui</creator><creator>Cheng, Wei</creator><creator>Chen, Xuefeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2086-6808</orcidid></search><sort><creationdate>20240401</creationdate><title>Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline</title><author>Huang, Jing ; Zhang, Zhifen ; Qin, Rui ; Yu, Yanlong ; Li, Yongjie ; Wen, Guangrui ; Cheng, Wei ; Chen, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-162c93d470382d4399df5bbfb2d4818d0ee032276da4e6db2f05520ef7ab9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic emission</topic><topic>Acoustics</topic><topic>Chemistry and Materials Science</topic><topic>Image coding</topic><topic>Intelligent Welding Manufacturing</topic><topic>Leakage</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Research Paper</topic><topic>Safety</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><topic>Transformers</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Zhang, Zhifen</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Yu, Yanlong</creatorcontrib><creatorcontrib>Li, Yongjie</creatorcontrib><creatorcontrib>Wen, Guangrui</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><collection>CrossRef</collection><jtitle>Welding in the world</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jing</au><au>Zhang, Zhifen</au><au>Qin, Rui</au><au>Yu, Yanlong</au><au>Li, Yongjie</au><au>Wen, Guangrui</au><au>Cheng, Wei</au><au>Chen, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline</atitle><jtitle>Welding in the world</jtitle><stitle>Weld World</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>68</volume><issue>4</issue><spage>879</spage><epage>891</epage><pages>879-891</pages><issn>0043-2288</issn><eissn>1878-6669</eissn><abstract>In recent years, acoustic emission (AE) has been widely used in pipeline operation safety monitoring and pipeline integrity maintenance. However, the diversity of cracks in the weld joints of pipelines leads to the complexity of time-varying acoustic emission signals, which limits the monitoring accuracy in practical applications. Therefore, a pipeline weld crack leakage monitoring system based on acoustic emission data image coding and deep learning model is proposed in this paper. Specifically, firstly, based on Markov transition field, the leakage signal collected by the AE monitoring system is encoded into two-dimensional image data, and the multi-dimensional phase space trajectory of the signal is revealed while strengthening the correlation and time dependence between the time series sampling points. Then, a residual Swin transformer network model is constructed to obtain useful information from AE coding images and identify different leakage conditions. Finally, experiments with different leakage states are designed to verify the superiority of the proposed method in multiple evaluation indexes, and the recognition accuracy rate reaches 97.86%. The comparison experiment with other methods further proves that the proposed monitoring strategy can be deployed online to maintain the safety of weld pipeline operation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40194-023-01632-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2086-6808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-2288
ispartof Welding in the world, 2024-04, Vol.68 (4), p.879-891
issn 0043-2288
1878-6669
language eng
recordid cdi_proquest_journals_2973143960
source SpringerLink
subjects Acoustic emission
Acoustics
Chemistry and Materials Science
Image coding
Intelligent Welding Manufacturing
Leakage
Materials Science
Metallic Materials
Monitoring
Monitoring systems
Research Paper
Safety
Solid Mechanics
Theoretical and Applied Mechanics
Time dependence
Transformers
Welded joints
title Residual Swin transformer-based weld crack leakage monitoring of pressure pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Swin%20transformer-based%20weld%20crack%20leakage%20monitoring%20of%20pressure%20pipeline&rft.jtitle=Welding%20in%20the%20world&rft.au=Huang,%20Jing&rft.date=2024-04-01&rft.volume=68&rft.issue=4&rft.spage=879&rft.epage=891&rft.pages=879-891&rft.issn=0043-2288&rft.eissn=1878-6669&rft_id=info:doi/10.1007/s40194-023-01632-1&rft_dat=%3Cproquest_cross%3E2973143960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973143960&rft_id=info:pmid/&rfr_iscdi=true