Computational and Experimental Study of the Mechanical Properties of Porous Particles Based on Cellulose Diacetate
The mechanical behavior of porous particles of various diameters obtained by the cryolyophilization drying of frozen droplets of 1-wt % cellulose diacetate solution in 1,4-dioxane are studied. The morphology of the particles is visualized by scanning electron microscopy. It is shown that the particl...
Gespeichert in:
Veröffentlicht in: | Nanobiotechnology Reports (Online) 2023-12, Vol.18 (Suppl 1), p.S110-S115 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical behavior of porous particles of various diameters obtained by the cryolyophilization drying of frozen droplets of 1-wt % cellulose diacetate solution in 1,4-dioxane are studied. The morphology of the particles is visualized by scanning electron microscopy. It is shown that the particles have a predominantly spherical shape and a branched porous structure. The elastic and tangent moduli, Poisson’s ratio, and yield strength of the particle material are determined through mechanical tests of individual particles compressed between parallel plates. The results are then used to solve the reverse-engineering problem using the finite-element method. A bilinear stress-strain diagram taking into account the plastic properties of the particle material is obtained. Verification of the obtained model was carried out in a similar experiment upon the compression of particles of a different diameter. |
---|---|
ISSN: | 2635-1676 1995-0780 2635-1684 1995-0799 |
DOI: | 10.1134/S2635167623600785 |