Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors

Single particle tracking (SPT) combined with total internal reflection fluorescence microscopy (TIRFm) is an outstanding approach to decipher mechanisms on the cell membrane at the nanoscale. Multicolor configurations, needed to investigate interactions, are still hindered by several challenges. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-03, Vol.12 (9), p.n/a
Hauptverfasser: Schirripa Spagnolo, Chiara, Moscardini, Aldo, Amodeo, Rosy, Beltram, Fabio, Luin, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced optical materials
container_volume 12
creator Schirripa Spagnolo, Chiara
Moscardini, Aldo
Amodeo, Rosy
Beltram, Fabio
Luin, Stefano
description Single particle tracking (SPT) combined with total internal reflection fluorescence microscopy (TIRFm) is an outstanding approach to decipher mechanisms on the cell membrane at the nanoscale. Multicolor configurations, needed to investigate interactions, are still hindered by several challenges. This work systematically and quantitatively analyzes the impact of necessary elements of SPT‐TIRFm setups on the signal‐to‐noise ratio (SNR), which must be optimized especially in dynamic studies needing minimally invasive dyes for biomolecule labeling. Autofluorescence originating from commonly used optical glass results in the dominant limiting factor in TIRFm, and a cover glass material is tested yielding significant SNR improvements in multichannel TIRFm. Moreover, methodologies are optimized for reducing fluorophore photobleaching in multicolor implementations requiring simultaneous stabilization of multiple dyes. The developed strategies are applied to the fast p75NTR receptors labeled by two fluorophores on the membrane of living cells, achieving reliable, simultaneous two‐color SPT, contrary to configurations using standard cover glasses. This work highlights the importance of optical materials suitable for microscopy and with reduced autofluorescence for increasing sensitivity toward ultimate spatiotemporal resolutions. In particular, the present protocols can pave the way for multicolor super‐resolved localization and tracking of single molecules by TIRFm, greatly expanding the potential of SPT. Strategies for achieving two‐color single‐particle tracking on fast diffusing molecules labeled with small organic dyes are discussed Typical coverglasses generate significant fluorescence background in these experiments, so an alternative optical material is introduced, with the needed aberration corrections; moreover, other autofluorescence sources and photobleaching are analyzed and reduced.
doi_str_mv 10.1002/adom.202302012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973133890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973133890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-a1a9cce278d6a0dea423cb0a2fbc4231cc3c4128e5fdc6d4f3b03d1cb910e4703</originalsourceid><addsrcrecordid>eNqFUEFOwzAQtBBIVIUr50icU9Z22tTHqqWA1KoSFHG0HGeNUpI62ImqcuIJvJGX4KgIuHHamdmZXWkIuaAwoADsSuW2GjBgHBhQdkR6jIphTCGlx3_wKTn3fgMAgXCRpD3ytKqboireMI_WO_v5_jG1pXXRQ7F9LjHQpS1RtyVGa6f0S1Aja6K58k3YzQpjWt9pS6wyp7YY3aPGurHOn5ETo0qP59-zTx7n1-vpbbxY3dxNJ4tYc8pYrKgSWiNLx_lIQY4qYVxnoJjJdIBUa64TysY4NLke5YnhGfCc6kxQwCQF3ieXh7u1s68t-kZubOu24aVkIuWU87HoXIODSzvrvUMja1dUyu0lBdn1J7v-5E9_ISAOgV1R4v4ft5zMVsvf7Bf-FHeG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973133890</pqid></control><display><type>article</type><title>Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schirripa Spagnolo, Chiara ; Moscardini, Aldo ; Amodeo, Rosy ; Beltram, Fabio ; Luin, Stefano</creator><creatorcontrib>Schirripa Spagnolo, Chiara ; Moscardini, Aldo ; Amodeo, Rosy ; Beltram, Fabio ; Luin, Stefano</creatorcontrib><description>Single particle tracking (SPT) combined with total internal reflection fluorescence microscopy (TIRFm) is an outstanding approach to decipher mechanisms on the cell membrane at the nanoscale. Multicolor configurations, needed to investigate interactions, are still hindered by several challenges. This work systematically and quantitatively analyzes the impact of necessary elements of SPT‐TIRFm setups on the signal‐to‐noise ratio (SNR), which must be optimized especially in dynamic studies needing minimally invasive dyes for biomolecule labeling. Autofluorescence originating from commonly used optical glass results in the dominant limiting factor in TIRFm, and a cover glass material is tested yielding significant SNR improvements in multichannel TIRFm. Moreover, methodologies are optimized for reducing fluorophore photobleaching in multicolor implementations requiring simultaneous stabilization of multiple dyes. The developed strategies are applied to the fast p75NTR receptors labeled by two fluorophores on the membrane of living cells, achieving reliable, simultaneous two‐color SPT, contrary to configurations using standard cover glasses. This work highlights the importance of optical materials suitable for microscopy and with reduced autofluorescence for increasing sensitivity toward ultimate spatiotemporal resolutions. In particular, the present protocols can pave the way for multicolor super‐resolved localization and tracking of single molecules by TIRFm, greatly expanding the potential of SPT. Strategies for achieving two‐color single‐particle tracking on fast diffusing molecules labeled with small organic dyes are discussed Typical coverglasses generate significant fluorescence background in these experiments, so an alternative optical material is introduced, with the needed aberration corrections; moreover, other autofluorescence sources and photobleaching are analyzed and reduced.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202302012</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomolecules ; Cell membranes ; Chemical compounds ; Configurations ; cover glasses for TIRF microscopy ; Diffusion rate ; Dyes ; Impact analysis ; live cell nanoscopy ; Microscopy ; multicolor single molecule imaging ; Optical glass ; optical glass fluorescence ; Optical materials ; Optics ; Particle tracking ; photobleaching reduction ; Receptors</subject><ispartof>Advanced optical materials, 2024-03, Vol.12 (9), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-a1a9cce278d6a0dea423cb0a2fbc4231cc3c4128e5fdc6d4f3b03d1cb910e4703</cites><orcidid>0000-0002-3635-8907 ; 0000-0002-6081-436X ; 0000-0002-8158-3900 ; 0000-0003-2673-366X ; 0000-0002-4942-3149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202302012$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202302012$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Schirripa Spagnolo, Chiara</creatorcontrib><creatorcontrib>Moscardini, Aldo</creatorcontrib><creatorcontrib>Amodeo, Rosy</creatorcontrib><creatorcontrib>Beltram, Fabio</creatorcontrib><creatorcontrib>Luin, Stefano</creatorcontrib><title>Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors</title><title>Advanced optical materials</title><description>Single particle tracking (SPT) combined with total internal reflection fluorescence microscopy (TIRFm) is an outstanding approach to decipher mechanisms on the cell membrane at the nanoscale. Multicolor configurations, needed to investigate interactions, are still hindered by several challenges. This work systematically and quantitatively analyzes the impact of necessary elements of SPT‐TIRFm setups on the signal‐to‐noise ratio (SNR), which must be optimized especially in dynamic studies needing minimally invasive dyes for biomolecule labeling. Autofluorescence originating from commonly used optical glass results in the dominant limiting factor in TIRFm, and a cover glass material is tested yielding significant SNR improvements in multichannel TIRFm. Moreover, methodologies are optimized for reducing fluorophore photobleaching in multicolor implementations requiring simultaneous stabilization of multiple dyes. The developed strategies are applied to the fast p75NTR receptors labeled by two fluorophores on the membrane of living cells, achieving reliable, simultaneous two‐color SPT, contrary to configurations using standard cover glasses. This work highlights the importance of optical materials suitable for microscopy and with reduced autofluorescence for increasing sensitivity toward ultimate spatiotemporal resolutions. In particular, the present protocols can pave the way for multicolor super‐resolved localization and tracking of single molecules by TIRFm, greatly expanding the potential of SPT. Strategies for achieving two‐color single‐particle tracking on fast diffusing molecules labeled with small organic dyes are discussed Typical coverglasses generate significant fluorescence background in these experiments, so an alternative optical material is introduced, with the needed aberration corrections; moreover, other autofluorescence sources and photobleaching are analyzed and reduced.</description><subject>Biomolecules</subject><subject>Cell membranes</subject><subject>Chemical compounds</subject><subject>Configurations</subject><subject>cover glasses for TIRF microscopy</subject><subject>Diffusion rate</subject><subject>Dyes</subject><subject>Impact analysis</subject><subject>live cell nanoscopy</subject><subject>Microscopy</subject><subject>multicolor single molecule imaging</subject><subject>Optical glass</subject><subject>optical glass fluorescence</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Particle tracking</subject><subject>photobleaching reduction</subject><subject>Receptors</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUEFOwzAQtBBIVIUr50icU9Z22tTHqqWA1KoSFHG0HGeNUpI62ImqcuIJvJGX4KgIuHHamdmZXWkIuaAwoADsSuW2GjBgHBhQdkR6jIphTCGlx3_wKTn3fgMAgXCRpD3ytKqboireMI_WO_v5_jG1pXXRQ7F9LjHQpS1RtyVGa6f0S1Aja6K58k3YzQpjWt9pS6wyp7YY3aPGurHOn5ETo0qP59-zTx7n1-vpbbxY3dxNJ4tYc8pYrKgSWiNLx_lIQY4qYVxnoJjJdIBUa64TysY4NLke5YnhGfCc6kxQwCQF3ieXh7u1s68t-kZubOu24aVkIuWU87HoXIODSzvrvUMja1dUyu0lBdn1J7v-5E9_ISAOgV1R4v4ft5zMVsvf7Bf-FHeG</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Schirripa Spagnolo, Chiara</creator><creator>Moscardini, Aldo</creator><creator>Amodeo, Rosy</creator><creator>Beltram, Fabio</creator><creator>Luin, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3635-8907</orcidid><orcidid>https://orcid.org/0000-0002-6081-436X</orcidid><orcidid>https://orcid.org/0000-0002-8158-3900</orcidid><orcidid>https://orcid.org/0000-0003-2673-366X</orcidid><orcidid>https://orcid.org/0000-0002-4942-3149</orcidid></search><sort><creationdate>20240301</creationdate><title>Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors</title><author>Schirripa Spagnolo, Chiara ; Moscardini, Aldo ; Amodeo, Rosy ; Beltram, Fabio ; Luin, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-a1a9cce278d6a0dea423cb0a2fbc4231cc3c4128e5fdc6d4f3b03d1cb910e4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomolecules</topic><topic>Cell membranes</topic><topic>Chemical compounds</topic><topic>Configurations</topic><topic>cover glasses for TIRF microscopy</topic><topic>Diffusion rate</topic><topic>Dyes</topic><topic>Impact analysis</topic><topic>live cell nanoscopy</topic><topic>Microscopy</topic><topic>multicolor single molecule imaging</topic><topic>Optical glass</topic><topic>optical glass fluorescence</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Particle tracking</topic><topic>photobleaching reduction</topic><topic>Receptors</topic><toplevel>online_resources</toplevel><creatorcontrib>Schirripa Spagnolo, Chiara</creatorcontrib><creatorcontrib>Moscardini, Aldo</creatorcontrib><creatorcontrib>Amodeo, Rosy</creatorcontrib><creatorcontrib>Beltram, Fabio</creatorcontrib><creatorcontrib>Luin, Stefano</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schirripa Spagnolo, Chiara</au><au>Moscardini, Aldo</au><au>Amodeo, Rosy</au><au>Beltram, Fabio</au><au>Luin, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors</atitle><jtitle>Advanced optical materials</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Single particle tracking (SPT) combined with total internal reflection fluorescence microscopy (TIRFm) is an outstanding approach to decipher mechanisms on the cell membrane at the nanoscale. Multicolor configurations, needed to investigate interactions, are still hindered by several challenges. This work systematically and quantitatively analyzes the impact of necessary elements of SPT‐TIRFm setups on the signal‐to‐noise ratio (SNR), which must be optimized especially in dynamic studies needing minimally invasive dyes for biomolecule labeling. Autofluorescence originating from commonly used optical glass results in the dominant limiting factor in TIRFm, and a cover glass material is tested yielding significant SNR improvements in multichannel TIRFm. Moreover, methodologies are optimized for reducing fluorophore photobleaching in multicolor implementations requiring simultaneous stabilization of multiple dyes. The developed strategies are applied to the fast p75NTR receptors labeled by two fluorophores on the membrane of living cells, achieving reliable, simultaneous two‐color SPT, contrary to configurations using standard cover glasses. This work highlights the importance of optical materials suitable for microscopy and with reduced autofluorescence for increasing sensitivity toward ultimate spatiotemporal resolutions. In particular, the present protocols can pave the way for multicolor super‐resolved localization and tracking of single molecules by TIRFm, greatly expanding the potential of SPT. Strategies for achieving two‐color single‐particle tracking on fast diffusing molecules labeled with small organic dyes are discussed Typical coverglasses generate significant fluorescence background in these experiments, so an alternative optical material is introduced, with the needed aberration corrections; moreover, other autofluorescence sources and photobleaching are analyzed and reduced.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202302012</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3635-8907</orcidid><orcidid>https://orcid.org/0000-0002-6081-436X</orcidid><orcidid>https://orcid.org/0000-0002-8158-3900</orcidid><orcidid>https://orcid.org/0000-0003-2673-366X</orcidid><orcidid>https://orcid.org/0000-0002-4942-3149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-03, Vol.12 (9), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2973133890
source Wiley Online Library Journals Frontfile Complete
subjects Biomolecules
Cell membranes
Chemical compounds
Configurations
cover glasses for TIRF microscopy
Diffusion rate
Dyes
Impact analysis
live cell nanoscopy
Microscopy
multicolor single molecule imaging
Optical glass
optical glass fluorescence
Optical materials
Optics
Particle tracking
photobleaching reduction
Receptors
title Optimized Two‐Color Single‐Molecule Tracking of Fast‐Diffusing Membrane Receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Two%E2%80%90Color%20Single%E2%80%90Molecule%20Tracking%20of%20Fast%E2%80%90Diffusing%20Membrane%20Receptors&rft.jtitle=Advanced%20optical%20materials&rft.au=Schirripa%20Spagnolo,%20Chiara&rft.date=2024-03-01&rft.volume=12&rft.issue=9&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202302012&rft_dat=%3Cproquest_cross%3E2973133890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973133890&rft_id=info:pmid/&rfr_iscdi=true