Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering

Nickel‐rich layered oxides are a class of promising cathodes for high‐energy‐density lithium‐ion batteries (LIBs). However, their structural instability derived from crystallographic planar gliding and microcracking under high voltages has significantly hindered their practical applications. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-03, Vol.14 (12), p.n/a
Hauptverfasser: Zhang, Qimeng, Chu, Youqi, Wu, Junxiu, Dong, Pengyuan, Deng, Qiang, Chen, Changdong, Huang, Kevin, Yang, Chenghao, Lu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced energy materials
container_volume 14
creator Zhang, Qimeng
Chu, Youqi
Wu, Junxiu
Dong, Pengyuan
Deng, Qiang
Chen, Changdong
Huang, Kevin
Yang, Chenghao
Lu, Jun
description Nickel‐rich layered oxides are a class of promising cathodes for high‐energy‐density lithium‐ion batteries (LIBs). However, their structural instability derived from crystallographic planar gliding and microcracking under high voltages has significantly hindered their practical applications. Herein, resurfacing engineering for single‐crystalline LiNi0.83Co0.07Mn0.1O2 (SNCM) cathode is undertaken. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 (LATO) layer and a near‐surface confined cation hybridization region, is established through co‐infiltrating Al and Ti into SNCM, which can profoundly improve structural stability. Compelling evidences  show that high‐conductivity LATO‐overcoat facilitates Li+ conduction and resists electrolyte attack. The introduction of strong Al─O bonds and resurfacing regions stabilize bulk and near‐surface lattice oxygen respectively during cycling, thus hindering the formation of oxygen vacancies and the occurrence of detrimental phase transformations, ultimately suppressing the crystallographic planar gliding and nanocracking. Subsequently, the modified SNCM drastically outperforms the baseline SNCM, exhibiting an ultrahigh 88.9% retention rate of original capacity at 1.0C after 400 cycles, and a discharge capacity of 146.8 mAh g−1 with a 92.6% capacity retention rate after 200 cycles at 5.0C within a voltage window of 2.7–4.3 V. The promising performance demonstrated by the multifunctional surface coating highlights a new way to stabilize Ni‐rich cathodes for LIBs. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 layer and a near‐surface rock‐salt region, is established through co‐infiltrating Al/Ti into LiNi0.83Co0.07Mn0.1O2 (SNCM). The composite surface engineering effectively suppresses planar gliding and microcracking, enabling fast ion transport and improved structural stability for SNCM. It exhibits an ultrahigh capacity retention of 88.9 % after 400 cycles at 1C.
doi_str_mv 10.1002/aenm.202303764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973035909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973035909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-1ccc2804b1b6e287b4dfb7f8f666fd997975ce1add8e6bdb7201145aa0d2c5613</originalsourceid><addsrcrecordid>eNqFkE9LwzAYxosoOKZXzwHPm0naJs1xlDmFbYrTc0jTtM3smpmkyDz5EfyMfhIzJvPoe3n_8DwPL78oukJwjCDEN0J1mzGGOIYxJclJNEAEJSOSJfD0OMf4PLp0bg1DJQzBOB5EHwvtdS287mrw2IpOWDBrdblfdQdWobfq-_MrtzvnRQuWWr6qNhyetGxALnxjSuWAb6zp6wYs-tbrqu-k16YL8txstsZpr8Cqt5WQCky7WndK2RB8EZ1VonXq8rcPo5fb6XN-N5o_zO7zyXwkY0STEZJS4gwmBSqIwhktkrIqaJVVhJCqZIwymkqFRFlmihRlQTFEKEmFgCWWKUHxMLo-5G6teeuV83xtehvecxwzGoClDLKgGh9U0hrnrKr41uqNsDuOIN8j5nvE_Ig4GNjB8K5btftHzSfT5eLP-wM3UYP1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973035909</pqid></control><display><type>article</type><title>Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Qimeng ; Chu, Youqi ; Wu, Junxiu ; Dong, Pengyuan ; Deng, Qiang ; Chen, Changdong ; Huang, Kevin ; Yang, Chenghao ; Lu, Jun</creator><creatorcontrib>Zhang, Qimeng ; Chu, Youqi ; Wu, Junxiu ; Dong, Pengyuan ; Deng, Qiang ; Chen, Changdong ; Huang, Kevin ; Yang, Chenghao ; Lu, Jun</creatorcontrib><description>Nickel‐rich layered oxides are a class of promising cathodes for high‐energy‐density lithium‐ion batteries (LIBs). However, their structural instability derived from crystallographic planar gliding and microcracking under high voltages has significantly hindered their practical applications. Herein, resurfacing engineering for single‐crystalline LiNi0.83Co0.07Mn0.1O2 (SNCM) cathode is undertaken. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 (LATO) layer and a near‐surface confined cation hybridization region, is established through co‐infiltrating Al and Ti into SNCM, which can profoundly improve structural stability. Compelling evidences  show that high‐conductivity LATO‐overcoat facilitates Li+ conduction and resists electrolyte attack. The introduction of strong Al─O bonds and resurfacing regions stabilize bulk and near‐surface lattice oxygen respectively during cycling, thus hindering the formation of oxygen vacancies and the occurrence of detrimental phase transformations, ultimately suppressing the crystallographic planar gliding and nanocracking. Subsequently, the modified SNCM drastically outperforms the baseline SNCM, exhibiting an ultrahigh 88.9% retention rate of original capacity at 1.0C after 400 cycles, and a discharge capacity of 146.8 mAh g−1 with a 92.6% capacity retention rate after 200 cycles at 5.0C within a voltage window of 2.7–4.3 V. The promising performance demonstrated by the multifunctional surface coating highlights a new way to stabilize Ni‐rich cathodes for LIBs. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 layer and a near‐surface rock‐salt region, is established through co‐infiltrating Al/Ti into LiNi0.83Co0.07Mn0.1O2 (SNCM). The composite surface engineering effectively suppresses planar gliding and microcracking, enabling fast ion transport and improved structural stability for SNCM. It exhibits an ultrahigh capacity retention of 88.9 % after 400 cycles at 1C.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202303764</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Cathodes ; Crack initiation ; Crystallography ; Fracture mechanics ; Gliding ; ionic conductors ; Lattice vacancies ; Lithium-ion batteries ; lithium‐ion battery;Ni‐rich cathodes ; Microcracks ; Nickel ; Oxygen ; Phase transitions ; Resurfacing ; single‐crystal ; Structural stability ; surface coating</subject><ispartof>Advanced energy materials, 2024-03, Vol.14 (12), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-1ccc2804b1b6e287b4dfb7f8f666fd997975ce1add8e6bdb7201145aa0d2c5613</citedby><cites>FETCH-LOGICAL-c3174-1ccc2804b1b6e287b4dfb7f8f666fd997975ce1add8e6bdb7201145aa0d2c5613</cites><orcidid>0009-0006-2512-4511 ; 0000-0003-0858-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202303764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202303764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Wu, Junxiu</creatorcontrib><creatorcontrib>Dong, Pengyuan</creatorcontrib><creatorcontrib>Deng, Qiang</creatorcontrib><creatorcontrib>Chen, Changdong</creatorcontrib><creatorcontrib>Huang, Kevin</creatorcontrib><creatorcontrib>Yang, Chenghao</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering</title><title>Advanced energy materials</title><description>Nickel‐rich layered oxides are a class of promising cathodes for high‐energy‐density lithium‐ion batteries (LIBs). However, their structural instability derived from crystallographic planar gliding and microcracking under high voltages has significantly hindered their practical applications. Herein, resurfacing engineering for single‐crystalline LiNi0.83Co0.07Mn0.1O2 (SNCM) cathode is undertaken. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 (LATO) layer and a near‐surface confined cation hybridization region, is established through co‐infiltrating Al and Ti into SNCM, which can profoundly improve structural stability. Compelling evidences  show that high‐conductivity LATO‐overcoat facilitates Li+ conduction and resists electrolyte attack. The introduction of strong Al─O bonds and resurfacing regions stabilize bulk and near‐surface lattice oxygen respectively during cycling, thus hindering the formation of oxygen vacancies and the occurrence of detrimental phase transformations, ultimately suppressing the crystallographic planar gliding and nanocracking. Subsequently, the modified SNCM drastically outperforms the baseline SNCM, exhibiting an ultrahigh 88.9% retention rate of original capacity at 1.0C after 400 cycles, and a discharge capacity of 146.8 mAh g−1 with a 92.6% capacity retention rate after 200 cycles at 5.0C within a voltage window of 2.7–4.3 V. The promising performance demonstrated by the multifunctional surface coating highlights a new way to stabilize Ni‐rich cathodes for LIBs. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 layer and a near‐surface rock‐salt region, is established through co‐infiltrating Al/Ti into LiNi0.83Co0.07Mn0.1O2 (SNCM). The composite surface engineering effectively suppresses planar gliding and microcracking, enabling fast ion transport and improved structural stability for SNCM. It exhibits an ultrahigh capacity retention of 88.9 % after 400 cycles at 1C.</description><subject>Bonding strength</subject><subject>Cathodes</subject><subject>Crack initiation</subject><subject>Crystallography</subject><subject>Fracture mechanics</subject><subject>Gliding</subject><subject>ionic conductors</subject><subject>Lattice vacancies</subject><subject>Lithium-ion batteries</subject><subject>lithium‐ion battery;Ni‐rich cathodes</subject><subject>Microcracks</subject><subject>Nickel</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Resurfacing</subject><subject>single‐crystal</subject><subject>Structural stability</subject><subject>surface coating</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYxosoOKZXzwHPm0naJs1xlDmFbYrTc0jTtM3smpmkyDz5EfyMfhIzJvPoe3n_8DwPL78oukJwjCDEN0J1mzGGOIYxJclJNEAEJSOSJfD0OMf4PLp0bg1DJQzBOB5EHwvtdS287mrw2IpOWDBrdblfdQdWobfq-_MrtzvnRQuWWr6qNhyetGxALnxjSuWAb6zp6wYs-tbrqu-k16YL8txstsZpr8Cqt5WQCky7WndK2RB8EZ1VonXq8rcPo5fb6XN-N5o_zO7zyXwkY0STEZJS4gwmBSqIwhktkrIqaJVVhJCqZIwymkqFRFlmihRlQTFEKEmFgCWWKUHxMLo-5G6teeuV83xtehvecxwzGoClDLKgGh9U0hrnrKr41uqNsDuOIN8j5nvE_Ig4GNjB8K5btftHzSfT5eLP-wM3UYP1</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zhang, Qimeng</creator><creator>Chu, Youqi</creator><creator>Wu, Junxiu</creator><creator>Dong, Pengyuan</creator><creator>Deng, Qiang</creator><creator>Chen, Changdong</creator><creator>Huang, Kevin</creator><creator>Yang, Chenghao</creator><creator>Lu, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-2512-4511</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></search><sort><creationdate>20240301</creationdate><title>Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering</title><author>Zhang, Qimeng ; Chu, Youqi ; Wu, Junxiu ; Dong, Pengyuan ; Deng, Qiang ; Chen, Changdong ; Huang, Kevin ; Yang, Chenghao ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-1ccc2804b1b6e287b4dfb7f8f666fd997975ce1add8e6bdb7201145aa0d2c5613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Cathodes</topic><topic>Crack initiation</topic><topic>Crystallography</topic><topic>Fracture mechanics</topic><topic>Gliding</topic><topic>ionic conductors</topic><topic>Lattice vacancies</topic><topic>Lithium-ion batteries</topic><topic>lithium‐ion battery;Ni‐rich cathodes</topic><topic>Microcracks</topic><topic>Nickel</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Resurfacing</topic><topic>single‐crystal</topic><topic>Structural stability</topic><topic>surface coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Chu, Youqi</creatorcontrib><creatorcontrib>Wu, Junxiu</creatorcontrib><creatorcontrib>Dong, Pengyuan</creatorcontrib><creatorcontrib>Deng, Qiang</creatorcontrib><creatorcontrib>Chen, Changdong</creatorcontrib><creatorcontrib>Huang, Kevin</creatorcontrib><creatorcontrib>Yang, Chenghao</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qimeng</au><au>Chu, Youqi</au><au>Wu, Junxiu</au><au>Dong, Pengyuan</au><au>Deng, Qiang</au><au>Chen, Changdong</au><au>Huang, Kevin</au><au>Yang, Chenghao</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering</atitle><jtitle>Advanced energy materials</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Nickel‐rich layered oxides are a class of promising cathodes for high‐energy‐density lithium‐ion batteries (LIBs). However, their structural instability derived from crystallographic planar gliding and microcracking under high voltages has significantly hindered their practical applications. Herein, resurfacing engineering for single‐crystalline LiNi0.83Co0.07Mn0.1O2 (SNCM) cathode is undertaken. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 (LATO) layer and a near‐surface confined cation hybridization region, is established through co‐infiltrating Al and Ti into SNCM, which can profoundly improve structural stability. Compelling evidences  show that high‐conductivity LATO‐overcoat facilitates Li+ conduction and resists electrolyte attack. The introduction of strong Al─O bonds and resurfacing regions stabilize bulk and near‐surface lattice oxygen respectively during cycling, thus hindering the formation of oxygen vacancies and the occurrence of detrimental phase transformations, ultimately suppressing the crystallographic planar gliding and nanocracking. Subsequently, the modified SNCM drastically outperforms the baseline SNCM, exhibiting an ultrahigh 88.9% retention rate of original capacity at 1.0C after 400 cycles, and a discharge capacity of 146.8 mAh g−1 with a 92.6% capacity retention rate after 200 cycles at 5.0C within a voltage window of 2.7–4.3 V. The promising performance demonstrated by the multifunctional surface coating highlights a new way to stabilize Ni‐rich cathodes for LIBs. A passivation shell, comprising a surface fast ion conductor Li1.25Al0.25Ti1.5O4 layer and a near‐surface rock‐salt region, is established through co‐infiltrating Al/Ti into LiNi0.83Co0.07Mn0.1O2 (SNCM). The composite surface engineering effectively suppresses planar gliding and microcracking, enabling fast ion transport and improved structural stability for SNCM. It exhibits an ultrahigh capacity retention of 88.9 % after 400 cycles at 1C.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202303764</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0006-2512-4511</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-03, Vol.14 (12), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2973035909
source Wiley Online Library Journals Frontfile Complete
subjects Bonding strength
Cathodes
Crack initiation
Crystallography
Fracture mechanics
Gliding
ionic conductors
Lattice vacancies
Lithium-ion batteries
lithium‐ion battery
Ni‐rich cathodes
Microcracks
Nickel
Oxygen
Phase transitions
Resurfacing
single‐crystal
Structural stability
surface coating
title Mitigating Planar Gliding in Single‐Crystal Nickel‐Rich Cathodes through Multifunctional Composite Surface Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Planar%20Gliding%20in%20Single%E2%80%90Crystal%20Nickel%E2%80%90Rich%20Cathodes%20through%20Multifunctional%20Composite%20Surface%20Engineering&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Qimeng&rft.date=2024-03-01&rft.volume=14&rft.issue=12&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202303764&rft_dat=%3Cproquest_cross%3E2973035909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973035909&rft_id=info:pmid/&rfr_iscdi=true