Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity

Monitoring profiles with count responses is a common situation in industrial processes and for a count distributed process, the Conway–Maxwell–Poisson (COM-Poisson) regression model yields better outcomes for under- and overdispersed count variables. In this study, we propose CUSUM and EWMA charts b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2024-04, Vol.65 (2), p.597-643
Hauptverfasser: Mammadova, Ulduz, Özkale, M. Revan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 597
container_title Statistical papers (Berlin, Germany)
container_volume 65
creator Mammadova, Ulduz
Özkale, M. Revan
description Monitoring profiles with count responses is a common situation in industrial processes and for a count distributed process, the Conway–Maxwell–Poisson (COM-Poisson) regression model yields better outcomes for under- and overdispersed count variables. In this study, we propose CUSUM and EWMA charts based on the deviance residuals obtained from the COM-Poisson model, which are fitted by the PCR and r–k class estimators. We conducted a simulation study to evaluate the effect of additive and multiplicative types shifts in various shift sizes, the number of predictor, and several dispersion levels and to compare the performance of the proposed control charts with control charts in the literature in terms of average run length and standard deviation of run length. Moreover, a real data set is also analyzed to see the performance of the newly proposed control charts. The results show the superiority of the newly proposed control charts against some competitors, including CUSUM and EWMA control charts based on ML, PCR, and ridge deviance residuals in the presence of multicollinearity.
doi_str_mv 10.1007/s00362-023-01399-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2972958053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972958053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-881344768dec3856111eb5a44f9f2e2a6253acb12e1c8428324e14e248320e813</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4kaTOsirlIbUCCSqWlutMWlepU-yE0q7gG_hDvgRDkdixmlncc0dzEDpl9JxR2rsIlIqME8oFoUzkOdnuoQ7LmCB5L5f7qENzwUlKeXaIjkJYUMqklLSD3i-hAdNYN8NhbssmYOvwoHZrvfl8-xjr1zVUVdzuaxtC7fDK16WtAK9tM8cFvFjtDGAPwRatrshUByjwYPIwGWPtCjx8GvexmWsfi1tXgMfLtmqsqavKOtDeNptjdFDqKsDJ7-yiydXwcXBDRnfXt4P-iBiR8oZIyUSS9DJZgBEyzRhjME11kpR5yYHrjKdCmynjwIxMuBQ8AZYAT-JGIcJddLbrjS88txAatahb7-JJxfMez1NJUxFTfJcyvg7BQ6lW3i613yhG1bdqtVOtomr1o1ptIyR2UIhhNwP_V_0P9QUWlITJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2972958053</pqid></control><display><type>article</type><title>Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mammadova, Ulduz ; Özkale, M. Revan</creator><creatorcontrib>Mammadova, Ulduz ; Özkale, M. Revan</creatorcontrib><description>Monitoring profiles with count responses is a common situation in industrial processes and for a count distributed process, the Conway–Maxwell–Poisson (COM-Poisson) regression model yields better outcomes for under- and overdispersed count variables. In this study, we propose CUSUM and EWMA charts based on the deviance residuals obtained from the COM-Poisson model, which are fitted by the PCR and r–k class estimators. We conducted a simulation study to evaluate the effect of additive and multiplicative types shifts in various shift sizes, the number of predictor, and several dispersion levels and to compare the performance of the proposed control charts with control charts in the literature in terms of average run length and standard deviation of run length. Moreover, a real data set is also analyzed to see the performance of the newly proposed control charts. The results show the superiority of the newly proposed control charts against some competitors, including CUSUM and EWMA control charts based on ML, PCR, and ridge deviance residuals in the presence of multicollinearity.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-023-01399-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Control charts ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regression models ; Regular Article ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2024-04, Vol.65 (2), p.597-643</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-881344768dec3856111eb5a44f9f2e2a6253acb12e1c8428324e14e248320e813</citedby><cites>FETCH-LOGICAL-c352t-881344768dec3856111eb5a44f9f2e2a6253acb12e1c8428324e14e248320e813</cites><orcidid>0000-0001-5022-4932 ; 0000-0001-7085-7403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-023-01399-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-023-01399-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mammadova, Ulduz</creatorcontrib><creatorcontrib>Özkale, M. Revan</creatorcontrib><title>Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Monitoring profiles with count responses is a common situation in industrial processes and for a count distributed process, the Conway–Maxwell–Poisson (COM-Poisson) regression model yields better outcomes for under- and overdispersed count variables. In this study, we propose CUSUM and EWMA charts based on the deviance residuals obtained from the COM-Poisson model, which are fitted by the PCR and r–k class estimators. We conducted a simulation study to evaluate the effect of additive and multiplicative types shifts in various shift sizes, the number of predictor, and several dispersion levels and to compare the performance of the proposed control charts with control charts in the literature in terms of average run length and standard deviation of run length. Moreover, a real data set is also analyzed to see the performance of the newly proposed control charts. The results show the superiority of the newly proposed control charts against some competitors, including CUSUM and EWMA control charts based on ML, PCR, and ridge deviance residuals in the presence of multicollinearity.</description><subject>Control charts</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression models</subject><subject>Regular Article</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4kaTOsirlIbUCCSqWlutMWlepU-yE0q7gG_hDvgRDkdixmlncc0dzEDpl9JxR2rsIlIqME8oFoUzkOdnuoQ7LmCB5L5f7qENzwUlKeXaIjkJYUMqklLSD3i-hAdNYN8NhbssmYOvwoHZrvfl8-xjr1zVUVdzuaxtC7fDK16WtAK9tM8cFvFjtDGAPwRatrshUByjwYPIwGWPtCjx8GvexmWsfi1tXgMfLtmqsqavKOtDeNptjdFDqKsDJ7-yiydXwcXBDRnfXt4P-iBiR8oZIyUSS9DJZgBEyzRhjME11kpR5yYHrjKdCmynjwIxMuBQ8AZYAT-JGIcJddLbrjS88txAatahb7-JJxfMez1NJUxFTfJcyvg7BQ6lW3i613yhG1bdqtVOtomr1o1ptIyR2UIhhNwP_V_0P9QUWlITJ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Mammadova, Ulduz</creator><creator>Özkale, M. Revan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5022-4932</orcidid><orcidid>https://orcid.org/0000-0001-7085-7403</orcidid></search><sort><creationdate>20240401</creationdate><title>Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity</title><author>Mammadova, Ulduz ; Özkale, M. Revan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-881344768dec3856111eb5a44f9f2e2a6253acb12e1c8428324e14e248320e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control charts</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression models</topic><topic>Regular Article</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mammadova, Ulduz</creatorcontrib><creatorcontrib>Özkale, M. Revan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mammadova, Ulduz</au><au>Özkale, M. Revan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>65</volume><issue>2</issue><spage>597</spage><epage>643</epage><pages>597-643</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Monitoring profiles with count responses is a common situation in industrial processes and for a count distributed process, the Conway–Maxwell–Poisson (COM-Poisson) regression model yields better outcomes for under- and overdispersed count variables. In this study, we propose CUSUM and EWMA charts based on the deviance residuals obtained from the COM-Poisson model, which are fitted by the PCR and r–k class estimators. We conducted a simulation study to evaluate the effect of additive and multiplicative types shifts in various shift sizes, the number of predictor, and several dispersion levels and to compare the performance of the proposed control charts with control charts in the literature in terms of average run length and standard deviation of run length. Moreover, a real data set is also analyzed to see the performance of the newly proposed control charts. The results show the superiority of the newly proposed control charts against some competitors, including CUSUM and EWMA control charts based on ML, PCR, and ridge deviance residuals in the presence of multicollinearity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-023-01399-z</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0001-5022-4932</orcidid><orcidid>https://orcid.org/0000-0001-7085-7403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2024-04, Vol.65 (2), p.597-643
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2972958053
source SpringerLink Journals - AutoHoldings
subjects Control charts
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regression models
Regular Article
Statistics
Statistics for Business
title Detecting shifts in Conway–Maxwell–Poisson profile with deviance residual-based CUSUM and EWMA charts under multicollinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20shifts%20in%20Conway%E2%80%93Maxwell%E2%80%93Poisson%20profile%20with%20deviance%20residual-based%20CUSUM%20and%20EWMA%20charts%20under%20multicollinearity&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Mammadova,%20Ulduz&rft.date=2024-04-01&rft.volume=65&rft.issue=2&rft.spage=597&rft.epage=643&rft.pages=597-643&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-023-01399-z&rft_dat=%3Cproquest_cross%3E2972958053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2972958053&rft_id=info:pmid/&rfr_iscdi=true