Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices

Motivated by the popularity of stochastic rounding in the context of machine learning and the training of large-scale deep neural network models, we consider stochastic nearness rounding of real matrices \(\mathbf{A}\) with many more rows than columns. We provide novel theoretical evidence, supporte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Dexter, Gregory, Boutsikas, Christos, Ma, Linkai, Ipsen, Ilse C F, Drineas, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dexter, Gregory
Boutsikas, Christos
Ma, Linkai
Ipsen, Ilse C F
Drineas, Petros
description Motivated by the popularity of stochastic rounding in the context of machine learning and the training of large-scale deep neural network models, we consider stochastic nearness rounding of real matrices \(\mathbf{A}\) with many more rows than columns. We provide novel theoretical evidence, supported by extensive experimental evaluation that, with high probability, the smallest singular value of a stochastically rounded matrix is well bounded away from zero -- regardless of how close \(\mathbf{A}\) is to being rank deficient and even if \(\mathbf{A}\) is rank-deficient. In other words, stochastic rounding \textit{implicitly regularizes} tall and skinny matrices \(\mathbf{A}\) so that the rounded version has full column rank. Our proofs leverage powerful results in random matrix theory, and the idea that stochastic rounding errors do not concentrate in low-dimensional column spaces.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2969147552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969147552</sourcerecordid><originalsourceid>FETCH-proquest_journals_29691475523</originalsourceid><addsrcrecordid>eNqNyjEOgjAYQOHGxESi3KGJcxNoKchojEYHF2QnTalQUlvs3w56eh08gNMbvrdACWUsJ7uC0hVKAaYsy2hZUc5Zgva34OQoIGiJGxdtr-2AL4_ZaKmDeeFGDdEIr98KcCuMIcL2pB21xVcRvJYKNmh5FwZU-usabU_H9nAms3fPqCB0k4vefqmjdVnnRcU5Zf9dH6E7Obc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969147552</pqid></control><display><type>article</type><title>Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices</title><source>Free E- Journals</source><creator>Dexter, Gregory ; Boutsikas, Christos ; Ma, Linkai ; Ipsen, Ilse C F ; Drineas, Petros</creator><creatorcontrib>Dexter, Gregory ; Boutsikas, Christos ; Ma, Linkai ; Ipsen, Ilse C F ; Drineas, Petros</creatorcontrib><description>Motivated by the popularity of stochastic rounding in the context of machine learning and the training of large-scale deep neural network models, we consider stochastic nearness rounding of real matrices \(\mathbf{A}\) with many more rows than columns. We provide novel theoretical evidence, supported by extensive experimental evaluation that, with high probability, the smallest singular value of a stochastically rounded matrix is well bounded away from zero -- regardless of how close \(\mathbf{A}\) is to being rank deficient and even if \(\mathbf{A}\) is rank-deficient. In other words, stochastic rounding \textit{implicitly regularizes} tall and skinny matrices \(\mathbf{A}\) so that the rounded version has full column rank. Our proofs leverage powerful results in random matrix theory, and the idea that stochastic rounding errors do not concentrate in low-dimensional column spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Machine learning ; Matrix theory ; Rounding</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dexter, Gregory</creatorcontrib><creatorcontrib>Boutsikas, Christos</creatorcontrib><creatorcontrib>Ma, Linkai</creatorcontrib><creatorcontrib>Ipsen, Ilse C F</creatorcontrib><creatorcontrib>Drineas, Petros</creatorcontrib><title>Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices</title><title>arXiv.org</title><description>Motivated by the popularity of stochastic rounding in the context of machine learning and the training of large-scale deep neural network models, we consider stochastic nearness rounding of real matrices \(\mathbf{A}\) with many more rows than columns. We provide novel theoretical evidence, supported by extensive experimental evaluation that, with high probability, the smallest singular value of a stochastically rounded matrix is well bounded away from zero -- regardless of how close \(\mathbf{A}\) is to being rank deficient and even if \(\mathbf{A}\) is rank-deficient. In other words, stochastic rounding \textit{implicitly regularizes} tall and skinny matrices \(\mathbf{A}\) so that the rounded version has full column rank. Our proofs leverage powerful results in random matrix theory, and the idea that stochastic rounding errors do not concentrate in low-dimensional column spaces.</description><subject>Artificial neural networks</subject><subject>Machine learning</subject><subject>Matrix theory</subject><subject>Rounding</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyjEOgjAYQOHGxESi3KGJcxNoKchojEYHF2QnTalQUlvs3w56eh08gNMbvrdACWUsJ7uC0hVKAaYsy2hZUc5Zgva34OQoIGiJGxdtr-2AL4_ZaKmDeeFGDdEIr98KcCuMIcL2pB21xVcRvJYKNmh5FwZU-usabU_H9nAms3fPqCB0k4vefqmjdVnnRcU5Zf9dH6E7Obc</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Dexter, Gregory</creator><creator>Boutsikas, Christos</creator><creator>Ma, Linkai</creator><creator>Ipsen, Ilse C F</creator><creator>Drineas, Petros</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241206</creationdate><title>Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices</title><author>Dexter, Gregory ; Boutsikas, Christos ; Ma, Linkai ; Ipsen, Ilse C F ; Drineas, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29691475523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Machine learning</topic><topic>Matrix theory</topic><topic>Rounding</topic><toplevel>online_resources</toplevel><creatorcontrib>Dexter, Gregory</creatorcontrib><creatorcontrib>Boutsikas, Christos</creatorcontrib><creatorcontrib>Ma, Linkai</creatorcontrib><creatorcontrib>Ipsen, Ilse C F</creatorcontrib><creatorcontrib>Drineas, Petros</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dexter, Gregory</au><au>Boutsikas, Christos</au><au>Ma, Linkai</au><au>Ipsen, Ilse C F</au><au>Drineas, Petros</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices</atitle><jtitle>arXiv.org</jtitle><date>2024-12-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by the popularity of stochastic rounding in the context of machine learning and the training of large-scale deep neural network models, we consider stochastic nearness rounding of real matrices \(\mathbf{A}\) with many more rows than columns. We provide novel theoretical evidence, supported by extensive experimental evaluation that, with high probability, the smallest singular value of a stochastically rounded matrix is well bounded away from zero -- regardless of how close \(\mathbf{A}\) is to being rank deficient and even if \(\mathbf{A}\) is rank-deficient. In other words, stochastic rounding \textit{implicitly regularizes} tall and skinny matrices \(\mathbf{A}\) so that the rounded version has full column rank. Our proofs leverage powerful results in random matrix theory, and the idea that stochastic rounding errors do not concentrate in low-dimensional column spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2969147552
source Free E- Journals
subjects Artificial neural networks
Machine learning
Matrix theory
Rounding
title Stochastic Rounding Implicitly Regularizes Tall-and-Thin Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stochastic%20Rounding%20Implicitly%20Regularizes%20Tall-and-Thin%20Matrices&rft.jtitle=arXiv.org&rft.au=Dexter,%20Gregory&rft.date=2024-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2969147552%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969147552&rft_id=info:pmid/&rfr_iscdi=true