DTOR: Decision Tree Outlier Regressor to explain anomalies
Explaining outliers occurrence and mechanism of their occurrence can be extremely important in a variety of domains. Malfunctions, frauds, threats, in addition to being correctly identified, oftentimes need a valid explanation in order to effectively perform actionable counteracts. The ever more wid...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Crupi, Riccardo Regoli, Daniele Alessandro Damiano Sabatino Marano, Immacolata Brinis, Massimiliano Albertazzi, Luca Cirillo, Andrea Cosentini, Andrea Claudio |
description | Explaining outliers occurrence and mechanism of their occurrence can be extremely important in a variety of domains. Malfunctions, frauds, threats, in addition to being correctly identified, oftentimes need a valid explanation in order to effectively perform actionable counteracts. The ever more widespread use of sophisticated Machine Learning approach to identify anomalies make such explanations more challenging. We present the Decision Tree Outlier Regressor (DTOR), a technique for producing rule-based explanations for individual data points by estimating anomaly scores generated by an anomaly detection model. This is accomplished by first applying a Decision Tree Regressor, which computes the estimation score, and then extracting the relative path associated with the data point score. Our results demonstrate the robustness of DTOR even in datasets with a large number of features. Additionally, in contrast to other rule-based approaches, the generated rules are consistently satisfied by the points to be explained. Furthermore, our evaluation metrics indicate comparable performance to Anchors in outlier explanation tasks, with reduced execution time. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2969147022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969147022</sourcerecordid><originalsourceid>FETCH-proquest_journals_29691470223</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FsY7_qTbLNoJ4l6GuMWIzdhcB3r8XPQArc7iOxsRoVJpcsoQdyJmHqWUWJSY5yoSddO3XQ0N3Q0bZ6H3RNCGZTLkoaOnJ2bnYXFAn3nSxoK27qVX5oPYPvTEFP-6F8frpT_fktm7dyBehtEFb1casCqqNCslovrv-gJq6TZR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969147022</pqid></control><display><type>article</type><title>DTOR: Decision Tree Outlier Regressor to explain anomalies</title><source>Free E- Journals</source><creator>Crupi, Riccardo ; Regoli, Daniele ; Alessandro Damiano Sabatino ; Marano, Immacolata ; Brinis, Massimiliano ; Albertazzi, Luca ; Cirillo, Andrea ; Cosentini, Andrea Claudio</creator><creatorcontrib>Crupi, Riccardo ; Regoli, Daniele ; Alessandro Damiano Sabatino ; Marano, Immacolata ; Brinis, Massimiliano ; Albertazzi, Luca ; Cirillo, Andrea ; Cosentini, Andrea Claudio</creatorcontrib><description>Explaining outliers occurrence and mechanism of their occurrence can be extremely important in a variety of domains. Malfunctions, frauds, threats, in addition to being correctly identified, oftentimes need a valid explanation in order to effectively perform actionable counteracts. The ever more widespread use of sophisticated Machine Learning approach to identify anomalies make such explanations more challenging. We present the Decision Tree Outlier Regressor (DTOR), a technique for producing rule-based explanations for individual data points by estimating anomaly scores generated by an anomaly detection model. This is accomplished by first applying a Decision Tree Regressor, which computes the estimation score, and then extracting the relative path associated with the data point score. Our results demonstrate the robustness of DTOR even in datasets with a large number of features. Additionally, in contrast to other rule-based approaches, the generated rules are consistently satisfied by the points to be explained. Furthermore, our evaluation metrics indicate comparable performance to Anchors in outlier explanation tasks, with reduced execution time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Data points ; Decision trees ; Estimation ; Machine learning ; Outliers (statistics)</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Crupi, Riccardo</creatorcontrib><creatorcontrib>Regoli, Daniele</creatorcontrib><creatorcontrib>Alessandro Damiano Sabatino</creatorcontrib><creatorcontrib>Marano, Immacolata</creatorcontrib><creatorcontrib>Brinis, Massimiliano</creatorcontrib><creatorcontrib>Albertazzi, Luca</creatorcontrib><creatorcontrib>Cirillo, Andrea</creatorcontrib><creatorcontrib>Cosentini, Andrea Claudio</creatorcontrib><title>DTOR: Decision Tree Outlier Regressor to explain anomalies</title><title>arXiv.org</title><description>Explaining outliers occurrence and mechanism of their occurrence can be extremely important in a variety of domains. Malfunctions, frauds, threats, in addition to being correctly identified, oftentimes need a valid explanation in order to effectively perform actionable counteracts. The ever more widespread use of sophisticated Machine Learning approach to identify anomalies make such explanations more challenging. We present the Decision Tree Outlier Regressor (DTOR), a technique for producing rule-based explanations for individual data points by estimating anomaly scores generated by an anomaly detection model. This is accomplished by first applying a Decision Tree Regressor, which computes the estimation score, and then extracting the relative path associated with the data point score. Our results demonstrate the robustness of DTOR even in datasets with a large number of features. Additionally, in contrast to other rule-based approaches, the generated rules are consistently satisfied by the points to be explained. Furthermore, our evaluation metrics indicate comparable performance to Anchors in outlier explanation tasks, with reduced execution time.</description><subject>Anomalies</subject><subject>Data points</subject><subject>Decision trees</subject><subject>Estimation</subject><subject>Machine learning</subject><subject>Outliers (statistics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FsY7_qTbLNoJ4l6GuMWIzdhcB3r8XPQArc7iOxsRoVJpcsoQdyJmHqWUWJSY5yoSddO3XQ0N3Q0bZ6H3RNCGZTLkoaOnJ2bnYXFAn3nSxoK27qVX5oPYPvTEFP-6F8frpT_fktm7dyBehtEFb1casCqqNCslovrv-gJq6TZR</recordid><startdate>20240512</startdate><enddate>20240512</enddate><creator>Crupi, Riccardo</creator><creator>Regoli, Daniele</creator><creator>Alessandro Damiano Sabatino</creator><creator>Marano, Immacolata</creator><creator>Brinis, Massimiliano</creator><creator>Albertazzi, Luca</creator><creator>Cirillo, Andrea</creator><creator>Cosentini, Andrea Claudio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240512</creationdate><title>DTOR: Decision Tree Outlier Regressor to explain anomalies</title><author>Crupi, Riccardo ; Regoli, Daniele ; Alessandro Damiano Sabatino ; Marano, Immacolata ; Brinis, Massimiliano ; Albertazzi, Luca ; Cirillo, Andrea ; Cosentini, Andrea Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29691470223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Data points</topic><topic>Decision trees</topic><topic>Estimation</topic><topic>Machine learning</topic><topic>Outliers (statistics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Crupi, Riccardo</creatorcontrib><creatorcontrib>Regoli, Daniele</creatorcontrib><creatorcontrib>Alessandro Damiano Sabatino</creatorcontrib><creatorcontrib>Marano, Immacolata</creatorcontrib><creatorcontrib>Brinis, Massimiliano</creatorcontrib><creatorcontrib>Albertazzi, Luca</creatorcontrib><creatorcontrib>Cirillo, Andrea</creatorcontrib><creatorcontrib>Cosentini, Andrea Claudio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crupi, Riccardo</au><au>Regoli, Daniele</au><au>Alessandro Damiano Sabatino</au><au>Marano, Immacolata</au><au>Brinis, Massimiliano</au><au>Albertazzi, Luca</au><au>Cirillo, Andrea</au><au>Cosentini, Andrea Claudio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DTOR: Decision Tree Outlier Regressor to explain anomalies</atitle><jtitle>arXiv.org</jtitle><date>2024-05-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Explaining outliers occurrence and mechanism of their occurrence can be extremely important in a variety of domains. Malfunctions, frauds, threats, in addition to being correctly identified, oftentimes need a valid explanation in order to effectively perform actionable counteracts. The ever more widespread use of sophisticated Machine Learning approach to identify anomalies make such explanations more challenging. We present the Decision Tree Outlier Regressor (DTOR), a technique for producing rule-based explanations for individual data points by estimating anomaly scores generated by an anomaly detection model. This is accomplished by first applying a Decision Tree Regressor, which computes the estimation score, and then extracting the relative path associated with the data point score. Our results demonstrate the robustness of DTOR even in datasets with a large number of features. Additionally, in contrast to other rule-based approaches, the generated rules are consistently satisfied by the points to be explained. Furthermore, our evaluation metrics indicate comparable performance to Anchors in outlier explanation tasks, with reduced execution time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2969147022 |
source | Free E- Journals |
subjects | Anomalies Data points Decision trees Estimation Machine learning Outliers (statistics) |
title | DTOR: Decision Tree Outlier Regressor to explain anomalies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DTOR:%20Decision%20Tree%20Outlier%20Regressor%20to%20explain%20anomalies&rft.jtitle=arXiv.org&rft.au=Crupi,%20Riccardo&rft.date=2024-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2969147022%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969147022&rft_id=info:pmid/&rfr_iscdi=true |