Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix
This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by us...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-04, Vol.70 (4), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | Bistritz, Yuval Dekel, Idan |
description | This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas. |
doi_str_mv | 10.1109/TIT.2024.3364574 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2969052325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430196</ieee_id><sourcerecordid>2969052325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYjuXbho4nqwnzN0SYjKJKibceGqaacdKIEW20LEX-8QWLh6uXnnvpccAO4xGmGMxFNTNyOCCBtRWjJesQswwJxXhSg5uwQDhPC4EIyNr8FNSqs-Mo7JAHzVPtuFjXBu986n4OFkvQjR5eUGdiHCvLSw9nsbk-t3oYPKH-B78Mn5xW6tIpzZuHHZKQ-bYLdrl3_hm8rR_dyCq06tk707zyH4fHluprNi_vFaTyfzoiWM54IZrQ1t9ZjalquS44pQo0hFlBLElKJDhotOYW0UVYJrrRWvbEU106ZiyNAheDzd3cbwvbMpy1XYRd-_lESUAnFCCe8pdKLaGFKKtpPb6DYqHiRG8ihQ9gLlUaA8C-wrD6eKs9b-wxlFWJT0D1t8bgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969052325</pqid></control><display><type>article</type><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Yuval ; Dekel, Idan</creator><creatorcontrib>Bistritz, Yuval ; Dekel, Idan</creatorcontrib><description>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2024.3364574</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Correlation ; Electronic mail ; Floating point arithmetic ; Gohberg-Semencul inversion formulas ; Integer algorithms ; Integers ; Levinson algorithms ; Mathematical models ; Matrix decomposition ; Numerical stability ; Prediction algorithms ; Singularities ; Symmetric matrices ; Toeplitz matrices</subject><ispartof>IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</cites><orcidid>0000-0003-0120-4219 ; 0009-0001-2956-2125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bistritz, Yuval</creatorcontrib><creatorcontrib>Dekel, Idan</creatorcontrib><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Electronic mail</subject><subject>Floating point arithmetic</subject><subject>Gohberg-Semencul inversion formulas</subject><subject>Integer algorithms</subject><subject>Integers</subject><subject>Levinson algorithms</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Numerical stability</subject><subject>Prediction algorithms</subject><subject>Singularities</subject><subject>Symmetric matrices</subject><subject>Toeplitz matrices</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiYjuXbho4nqwnzN0SYjKJKibceGqaacdKIEW20LEX-8QWLh6uXnnvpccAO4xGmGMxFNTNyOCCBtRWjJesQswwJxXhSg5uwQDhPC4EIyNr8FNSqs-Mo7JAHzVPtuFjXBu986n4OFkvQjR5eUGdiHCvLSw9nsbk-t3oYPKH-B78Mn5xW6tIpzZuHHZKQ-bYLdrl3_hm8rR_dyCq06tk707zyH4fHluprNi_vFaTyfzoiWM54IZrQ1t9ZjalquS44pQo0hFlBLElKJDhotOYW0UVYJrrRWvbEU106ZiyNAheDzd3cbwvbMpy1XYRd-_lESUAnFCCe8pdKLaGFKKtpPb6DYqHiRG8ihQ9gLlUaA8C-wrD6eKs9b-wxlFWJT0D1t8bgk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bistritz, Yuval</creator><creator>Dekel, Idan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid><orcidid>https://orcid.org/0009-0001-2956-2125</orcidid></search><sort><creationdate>20240401</creationdate><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><author>Bistritz, Yuval ; Dekel, Idan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Electronic mail</topic><topic>Floating point arithmetic</topic><topic>Gohberg-Semencul inversion formulas</topic><topic>Integer algorithms</topic><topic>Integers</topic><topic>Levinson algorithms</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Numerical stability</topic><topic>Prediction algorithms</topic><topic>Singularities</topic><topic>Symmetric matrices</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Yuval</creatorcontrib><creatorcontrib>Dekel, Idan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Yuval</au><au>Dekel, Idan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2024.3364574</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid><orcidid>https://orcid.org/0009-0001-2956-2125</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2969052325 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Correlation Electronic mail Floating point arithmetic Gohberg-Semencul inversion formulas Integer algorithms Integers Levinson algorithms Mathematical models Matrix decomposition Numerical stability Prediction algorithms Singularities Symmetric matrices Toeplitz matrices |
title | Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20Levinson%20Algorithm%20for%20the%20Inversion%20of%20any%20Nonsingular%20Hermitian%20Toeplitz%20Matrix&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Bistritz,%20Yuval&rft.date=2024-04-01&rft.volume=70&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3364574&rft_dat=%3Cproquest_RIE%3E2969052325%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969052325&rft_id=info:pmid/&rft_ieee_id=10430196&rfr_iscdi=true |