Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix

This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-04, Vol.70 (4), p.1-1
Hauptverfasser: Bistritz, Yuval, Dekel, Idan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE transactions on information theory
container_volume 70
creator Bistritz, Yuval
Dekel, Idan
description This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.
doi_str_mv 10.1109/TIT.2024.3364574
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2969052325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430196</ieee_id><sourcerecordid>2969052325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYjuXbho4nqwnzN0SYjKJKibceGqaacdKIEW20LEX-8QWLh6uXnnvpccAO4xGmGMxFNTNyOCCBtRWjJesQswwJxXhSg5uwQDhPC4EIyNr8FNSqs-Mo7JAHzVPtuFjXBu986n4OFkvQjR5eUGdiHCvLSw9nsbk-t3oYPKH-B78Mn5xW6tIpzZuHHZKQ-bYLdrl3_hm8rR_dyCq06tk707zyH4fHluprNi_vFaTyfzoiWM54IZrQ1t9ZjalquS44pQo0hFlBLElKJDhotOYW0UVYJrrRWvbEU106ZiyNAheDzd3cbwvbMpy1XYRd-_lESUAnFCCe8pdKLaGFKKtpPb6DYqHiRG8ihQ9gLlUaA8C-wrD6eKs9b-wxlFWJT0D1t8bgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969052325</pqid></control><display><type>article</type><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Yuval ; Dekel, Idan</creator><creatorcontrib>Bistritz, Yuval ; Dekel, Idan</creatorcontrib><description>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2024.3364574</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Correlation ; Electronic mail ; Floating point arithmetic ; Gohberg-Semencul inversion formulas ; Integer algorithms ; Integers ; Levinson algorithms ; Mathematical models ; Matrix decomposition ; Numerical stability ; Prediction algorithms ; Singularities ; Symmetric matrices ; Toeplitz matrices</subject><ispartof>IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</cites><orcidid>0000-0003-0120-4219 ; 0009-0001-2956-2125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bistritz, Yuval</creatorcontrib><creatorcontrib>Dekel, Idan</creatorcontrib><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</description><subject>Algorithms</subject><subject>Correlation</subject><subject>Electronic mail</subject><subject>Floating point arithmetic</subject><subject>Gohberg-Semencul inversion formulas</subject><subject>Integer algorithms</subject><subject>Integers</subject><subject>Levinson algorithms</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Numerical stability</subject><subject>Prediction algorithms</subject><subject>Singularities</subject><subject>Symmetric matrices</subject><subject>Toeplitz matrices</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiYjuXbho4nqwnzN0SYjKJKibceGqaacdKIEW20LEX-8QWLh6uXnnvpccAO4xGmGMxFNTNyOCCBtRWjJesQswwJxXhSg5uwQDhPC4EIyNr8FNSqs-Mo7JAHzVPtuFjXBu986n4OFkvQjR5eUGdiHCvLSw9nsbk-t3oYPKH-B78Mn5xW6tIpzZuHHZKQ-bYLdrl3_hm8rR_dyCq06tk707zyH4fHluprNi_vFaTyfzoiWM54IZrQ1t9ZjalquS44pQo0hFlBLElKJDhotOYW0UVYJrrRWvbEU106ZiyNAheDzd3cbwvbMpy1XYRd-_lESUAnFCCe8pdKLaGFKKtpPb6DYqHiRG8ihQ9gLlUaA8C-wrD6eKs9b-wxlFWJT0D1t8bgk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bistritz, Yuval</creator><creator>Dekel, Idan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid><orcidid>https://orcid.org/0009-0001-2956-2125</orcidid></search><sort><creationdate>20240401</creationdate><title>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</title><author>Bistritz, Yuval ; Dekel, Idan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4dbbd3cb83ec5a651723da272aa92d69f0d59fa1bda3a95bbba57e73b4bd740d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Correlation</topic><topic>Electronic mail</topic><topic>Floating point arithmetic</topic><topic>Gohberg-Semencul inversion formulas</topic><topic>Integer algorithms</topic><topic>Integers</topic><topic>Levinson algorithms</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Numerical stability</topic><topic>Prediction algorithms</topic><topic>Singularities</topic><topic>Symmetric matrices</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Yuval</creatorcontrib><creatorcontrib>Dekel, Idan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Yuval</au><au>Dekel, Idan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper presents an integer preserving (IP) version of the Levinson algorithm to solve a normal set of equations for a Hermitian Toeplitz matrix with any singularity profile. The IP property means that for a matrix with integer entries, the algorithm can be completed over the integer solely by using a ring of integer operations. The IP algorithm provides remedies for unpredictable numerical outcomes when a corresponding floating-point (FP) Levinson algorithm either overlooks zero principal minors (PMs) or applies a singularity skipping routine to a PM that is considered erroneously to be zero. The error-free computational edge of integer arithmetic is also applicable to a non-integer Toeplitz matrix by first scaling it up to an acceptably accurate integer matrix. The proposed algorithm can also be used to obtain the inverse of a nonsingular Hermitian Toeplitz matrix (with any singularity profile) by one of two proposed IP Gohberg-Semencul type inversion formulas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2024.3364574</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid><orcidid>https://orcid.org/0009-0001-2956-2125</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-04, Vol.70 (4), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2969052325
source IEEE Electronic Library (IEL)
subjects Algorithms
Correlation
Electronic mail
Floating point arithmetic
Gohberg-Semencul inversion formulas
Integer algorithms
Integers
Levinson algorithms
Mathematical models
Matrix decomposition
Numerical stability
Prediction algorithms
Singularities
Symmetric matrices
Toeplitz matrices
title Integer Levinson Algorithm for the Inversion of any Nonsingular Hermitian Toeplitz Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20Levinson%20Algorithm%20for%20the%20Inversion%20of%20any%20Nonsingular%20Hermitian%20Toeplitz%20Matrix&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Bistritz,%20Yuval&rft.date=2024-04-01&rft.volume=70&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3364574&rft_dat=%3Cproquest_RIE%3E2969052325%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969052325&rft_id=info:pmid/&rft_ieee_id=10430196&rfr_iscdi=true