Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning
Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into acc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on emerging topics in computing 2024-01, Vol.12 (1), p.163-176 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 12 |
creator | Zhao, Bo-Wei Wang, Lei Hu, Peng-Wei Wong, Leon Su, Xiao-Rui Wang, Bao-Quan You, Zhu-Hong Hu, Lun |
description | Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy. |
doi_str_mv | 10.1109/TETC.2023.3239949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ESBDL</sourceid><recordid>TN_cdi_proquest_journals_2969049783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10034475</ieee_id><sourcerecordid>2969049783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOfDVpLnW6DygMZF6HdE27jK2pSav4723oLnZuzgfPec_hBeARoznGSL7sPnaLOUGEzimhUjJ5AyYE8yzhIkW3V_U9mIVwRENkmEsuJuC87INtari29cF4qJsS5u7X-GTry6F_s-7karvXJ7hpKufPurOugUMF331fw0_TumDjLIr8WA1XXreHOPcmmKYb-dxoH4kHcFfpUzCzS56Cr-Xw-zrJt6vN4jVP9kSyLiEpIRxVXMgyFSIzmmlCRao5LiinBdW0RIyVPE3LivOSkSwrCqIrIjgvhKZ0Cp5H3da7796ETh1d75vhpCKSS8SkyCKFR2rvXQjeVKr19qz9n8JIRWNVNFZFY9XF2GHnadyxxpgrHlHGREr_Af5TdHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969049783</pqid></control><display><type>article</type><title>Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning</title><source>IEEE Open Access Journals</source><creator>Zhao, Bo-Wei ; Wang, Lei ; Hu, Peng-Wei ; Wong, Leon ; Su, Xiao-Rui ; Wang, Bao-Quan ; You, Zhu-Hong ; Hu, Lun</creator><creatorcontrib>Zhao, Bo-Wei ; Wang, Lei ; Hu, Peng-Wei ; Wong, Leon ; Su, Xiao-Rui ; Wang, Bao-Quan ; You, Zhu-Hong ; Hu, Lun</creatorcontrib><description>Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2023.3239949</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Biological system modeling ; Computational modeling ; Diseases ; Drug repositioning ; drug-disease association ; Drugs ; graph representation learning ; Graph representations ; Graphical representations ; higher and lower-order information ; information fusion ; Learning ; Neoplasms ; Predictive models ; Proteins ; Representation learning</subject><ispartof>IEEE transactions on emerging topics in computing, 2024-01, Vol.12 (1), p.163-176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33</citedby><cites>FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33</cites><orcidid>0000-0001-5974-7932 ; 0000-0001-5468-6085 ; 0000-0003-1266-2696 ; 0000-0002-1591-8549 ; 0000-0001-8200-6016 ; 0000-0003-0184-307X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10034475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10034475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Bo-Wei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Hu, Peng-Wei</creatorcontrib><creatorcontrib>Wong, Leon</creatorcontrib><creatorcontrib>Su, Xiao-Rui</creatorcontrib><creatorcontrib>Wang, Bao-Quan</creatorcontrib><creatorcontrib>You, Zhu-Hong</creatorcontrib><creatorcontrib>Hu, Lun</creatorcontrib><title>Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Diseases</subject><subject>Drug repositioning</subject><subject>drug-disease association</subject><subject>Drugs</subject><subject>graph representation learning</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>higher and lower-order information</subject><subject>information fusion</subject><subject>Learning</subject><subject>Neoplasms</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>Representation learning</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOfDVpLnW6DygMZF6HdE27jK2pSav4723oLnZuzgfPec_hBeARoznGSL7sPnaLOUGEzimhUjJ5AyYE8yzhIkW3V_U9mIVwRENkmEsuJuC87INtari29cF4qJsS5u7X-GTry6F_s-7karvXJ7hpKufPurOugUMF331fw0_TumDjLIr8WA1XXreHOPcmmKYb-dxoH4kHcFfpUzCzS56Cr-Xw-zrJt6vN4jVP9kSyLiEpIRxVXMgyFSIzmmlCRao5LiinBdW0RIyVPE3LivOSkSwrCqIrIjgvhKZ0Cp5H3da7796ETh1d75vhpCKSS8SkyCKFR2rvXQjeVKr19qz9n8JIRWNVNFZFY9XF2GHnadyxxpgrHlHGREr_Af5TdHw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Zhao, Bo-Wei</creator><creator>Wang, Lei</creator><creator>Hu, Peng-Wei</creator><creator>Wong, Leon</creator><creator>Su, Xiao-Rui</creator><creator>Wang, Bao-Quan</creator><creator>You, Zhu-Hong</creator><creator>Hu, Lun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5974-7932</orcidid><orcidid>https://orcid.org/0000-0001-5468-6085</orcidid><orcidid>https://orcid.org/0000-0003-1266-2696</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid><orcidid>https://orcid.org/0000-0001-8200-6016</orcidid><orcidid>https://orcid.org/0000-0003-0184-307X</orcidid></search><sort><creationdate>202401</creationdate><title>Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning</title><author>Zhao, Bo-Wei ; Wang, Lei ; Hu, Peng-Wei ; Wong, Leon ; Su, Xiao-Rui ; Wang, Bao-Quan ; You, Zhu-Hong ; Hu, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-252260f679d5778ea4a2375a61b363b3a3d044d655df66d4288bb2af2766b7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Diseases</topic><topic>Drug repositioning</topic><topic>drug-disease association</topic><topic>Drugs</topic><topic>graph representation learning</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>higher and lower-order information</topic><topic>information fusion</topic><topic>Learning</topic><topic>Neoplasms</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>Representation learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bo-Wei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Hu, Peng-Wei</creatorcontrib><creatorcontrib>Wong, Leon</creatorcontrib><creatorcontrib>Su, Xiao-Rui</creatorcontrib><creatorcontrib>Wang, Bao-Quan</creatorcontrib><creatorcontrib>You, Zhu-Hong</creatorcontrib><creatorcontrib>Hu, Lun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Bo-Wei</au><au>Wang, Lei</au><au>Hu, Peng-Wei</au><au>Wong, Leon</au><au>Su, Xiao-Rui</au><au>Wang, Bao-Quan</au><au>You, Zhu-Hong</au><au>Hu, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2024-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>163</spage><epage>176</epage><pages>163-176</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2023.3239949</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5974-7932</orcidid><orcidid>https://orcid.org/0000-0001-5468-6085</orcidid><orcidid>https://orcid.org/0000-0003-1266-2696</orcidid><orcidid>https://orcid.org/0000-0002-1591-8549</orcidid><orcidid>https://orcid.org/0000-0001-8200-6016</orcidid><orcidid>https://orcid.org/0000-0003-0184-307X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2024-01, Vol.12 (1), p.163-176 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_proquest_journals_2969049783 |
source | IEEE Open Access Journals |
subjects | Alzheimer's disease Artificial neural networks Biological system modeling Computational modeling Diseases Drug repositioning drug-disease association Drugs graph representation learning Graph representations Graphical representations higher and lower-order information information fusion Learning Neoplasms Predictive models Proteins Representation learning |
title | Fusing Higher and Lower-Order Biological Information for Drug Repositioning via Graph Representation Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ESBDL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20Higher%20and%20Lower-Order%20Biological%20Information%20for%20Drug%20Repositioning%20via%20Graph%20Representation%20Learning&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Zhao,%20Bo-Wei&rft.date=2024-01&rft.volume=12&rft.issue=1&rft.spage=163&rft.epage=176&rft.pages=163-176&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2023.3239949&rft_dat=%3Cproquest_ESBDL%3E2969049783%3C/proquest_ESBDL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969049783&rft_id=info:pmid/&rft_ieee_id=10034475&rfr_iscdi=true |