Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression
The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e.,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2024, Vol.33, p.1965-1976 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1976 |
---|---|
container_issue | |
container_start_page | 1965 |
container_title | IEEE transactions on image processing |
container_volume | 33 |
creator | Li, Dingquan Ma, Kede Wang, Jing Li, Ge |
description | The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 . |
doi_str_mv | 10.1109/TIP.2024.3372464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2969048111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10462914</ieee_id><sourcerecordid>2954779063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EonztDAhFYmFJ8dkXxx6hghYJQcXHHDnJVaRK6mInA_8eoxaEmO6G533v9DB2CnwMwM3V6_18LLjAsZS5QIU77AAMQso5it248yxPc0AzYochLDkHzEDts5HUccmVOmCPs4a89dV7U9k2mfvG-fTGBqqTl2FNPnmm4Nqhb9wqWTifzF2z6pNJ64Y6mZLrqPefycR1a08hROiY7S1sG-hkO4_Y293t62SWPjxN7yfXD2klOfRpZXQpMkUlYF2bOtNyYQFA59KiNFqXVsmao5FYZ4JjZQVZUDmCVqLUgssjdrnpXXv3MVDoi64JFbWtXZEbQiFMhnluuJIRvfiHLt3gV_G7SCnDUcfLkeIbqvIuBE-LYu2bzvrPAnjx7bqIrotv18XWdYycb4uHsqP6N_AjNwJnG6Ahoj99qIQBlF8u_IC6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969048111</pqid></control><display><type>article</type><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</creator><creatorcontrib>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</creatorcontrib><description>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3372464</identifier><identifier>PMID: 38451766</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>coarse-to-fine super resolution ; Decoding ; Geometry ; hierarchical prior ; Image coding ; Image reconstruction ; MPEG encoders ; Octrees ; Point cloud compression ; Point cloud geometry compression ; Superresolution ; Three-dimensional displays</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.1965-1976</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</cites><orcidid>0000-0003-0140-0949 ; 0000-0002-5549-9027 ; 0000-0001-8608-1128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10462914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10462914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38451766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dingquan</creatorcontrib><creatorcontrib>Ma, Kede</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</description><subject>coarse-to-fine super resolution</subject><subject>Decoding</subject><subject>Geometry</subject><subject>hierarchical prior</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>MPEG encoders</subject><subject>Octrees</subject><subject>Point cloud compression</subject><subject>Point cloud geometry compression</subject><subject>Superresolution</subject><subject>Three-dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EonztDAhFYmFJ8dkXxx6hghYJQcXHHDnJVaRK6mInA_8eoxaEmO6G533v9DB2CnwMwM3V6_18LLjAsZS5QIU77AAMQso5it248yxPc0AzYochLDkHzEDts5HUccmVOmCPs4a89dV7U9k2mfvG-fTGBqqTl2FNPnmm4Nqhb9wqWTifzF2z6pNJ64Y6mZLrqPefycR1a08hROiY7S1sG-hkO4_Y293t62SWPjxN7yfXD2klOfRpZXQpMkUlYF2bOtNyYQFA59KiNFqXVsmao5FYZ4JjZQVZUDmCVqLUgssjdrnpXXv3MVDoi64JFbWtXZEbQiFMhnluuJIRvfiHLt3gV_G7SCnDUcfLkeIbqvIuBE-LYu2bzvrPAnjx7bqIrotv18XWdYycb4uHsqP6N_AjNwJnG6Ahoj99qIQBlF8u_IC6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Dingquan</creator><creator>Ma, Kede</creator><creator>Wang, Jing</creator><creator>Li, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0140-0949</orcidid><orcidid>https://orcid.org/0000-0002-5549-9027</orcidid><orcidid>https://orcid.org/0000-0001-8608-1128</orcidid></search><sort><creationdate>2024</creationdate><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><author>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>coarse-to-fine super resolution</topic><topic>Decoding</topic><topic>Geometry</topic><topic>hierarchical prior</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>MPEG encoders</topic><topic>Octrees</topic><topic>Point cloud compression</topic><topic>Point cloud geometry compression</topic><topic>Superresolution</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dingquan</creatorcontrib><creatorcontrib>Ma, Kede</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dingquan</au><au>Ma, Kede</au><au>Wang, Jing</au><au>Li, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>1965</spage><epage>1976</epage><pages>1965-1976</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38451766</pmid><doi>10.1109/TIP.2024.3372464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0140-0949</orcidid><orcidid>https://orcid.org/0000-0002-5549-9027</orcidid><orcidid>https://orcid.org/0000-0001-8608-1128</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2024, Vol.33, p.1965-1976 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2969048111 |
source | IEEE Electronic Library (IEL) |
subjects | coarse-to-fine super resolution Decoding Geometry hierarchical prior Image coding Image reconstruction MPEG encoders Octrees Point cloud compression Point cloud geometry compression Superresolution Three-dimensional displays |
title | Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Prior-Based%20Super%20Resolution%20for%20Point%20Cloud%20Geometry%20Compression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Dingquan&rft.date=2024&rft.volume=33&rft.spage=1965&rft.epage=1976&rft.pages=1965-1976&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3372464&rft_dat=%3Cproquest_RIE%3E2954779063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969048111&rft_id=info:pmid/38451766&rft_ieee_id=10462914&rfr_iscdi=true |