Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression

The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024, Vol.33, p.1965-1976
Hauptverfasser: Li, Dingquan, Ma, Kede, Wang, Jing, Li, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1976
container_issue
container_start_page 1965
container_title IEEE transactions on image processing
container_volume 33
creator Li, Dingquan
Ma, Kede
Wang, Jing
Li, Ge
description The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .
doi_str_mv 10.1109/TIP.2024.3372464
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2969048111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10462914</ieee_id><sourcerecordid>2954779063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EonztDAhFYmFJ8dkXxx6hghYJQcXHHDnJVaRK6mInA_8eoxaEmO6G533v9DB2CnwMwM3V6_18LLjAsZS5QIU77AAMQso5it248yxPc0AzYochLDkHzEDts5HUccmVOmCPs4a89dV7U9k2mfvG-fTGBqqTl2FNPnmm4Nqhb9wqWTifzF2z6pNJ64Y6mZLrqPefycR1a08hROiY7S1sG-hkO4_Y293t62SWPjxN7yfXD2klOfRpZXQpMkUlYF2bOtNyYQFA59KiNFqXVsmao5FYZ4JjZQVZUDmCVqLUgssjdrnpXXv3MVDoi64JFbWtXZEbQiFMhnluuJIRvfiHLt3gV_G7SCnDUcfLkeIbqvIuBE-LYu2bzvrPAnjx7bqIrotv18XWdYycb4uHsqP6N_AjNwJnG6Ahoj99qIQBlF8u_IC6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969048111</pqid></control><display><type>article</type><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</creator><creatorcontrib>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</creatorcontrib><description>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3372464</identifier><identifier>PMID: 38451766</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>coarse-to-fine super resolution ; Decoding ; Geometry ; hierarchical prior ; Image coding ; Image reconstruction ; MPEG encoders ; Octrees ; Point cloud compression ; Point cloud geometry compression ; Superresolution ; Three-dimensional displays</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.1965-1976</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</cites><orcidid>0000-0003-0140-0949 ; 0000-0002-5549-9027 ; 0000-0001-8608-1128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10462914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10462914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38451766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dingquan</creatorcontrib><creatorcontrib>Ma, Kede</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</description><subject>coarse-to-fine super resolution</subject><subject>Decoding</subject><subject>Geometry</subject><subject>hierarchical prior</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>MPEG encoders</subject><subject>Octrees</subject><subject>Point cloud compression</subject><subject>Point cloud geometry compression</subject><subject>Superresolution</subject><subject>Three-dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EonztDAhFYmFJ8dkXxx6hghYJQcXHHDnJVaRK6mInA_8eoxaEmO6G533v9DB2CnwMwM3V6_18LLjAsZS5QIU77AAMQso5it248yxPc0AzYochLDkHzEDts5HUccmVOmCPs4a89dV7U9k2mfvG-fTGBqqTl2FNPnmm4Nqhb9wqWTifzF2z6pNJ64Y6mZLrqPefycR1a08hROiY7S1sG-hkO4_Y293t62SWPjxN7yfXD2klOfRpZXQpMkUlYF2bOtNyYQFA59KiNFqXVsmao5FYZ4JjZQVZUDmCVqLUgssjdrnpXXv3MVDoi64JFbWtXZEbQiFMhnluuJIRvfiHLt3gV_G7SCnDUcfLkeIbqvIuBE-LYu2bzvrPAnjx7bqIrotv18XWdYycb4uHsqP6N_AjNwJnG6Ahoj99qIQBlF8u_IC6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Dingquan</creator><creator>Ma, Kede</creator><creator>Wang, Jing</creator><creator>Li, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0140-0949</orcidid><orcidid>https://orcid.org/0000-0002-5549-9027</orcidid><orcidid>https://orcid.org/0000-0001-8608-1128</orcidid></search><sort><creationdate>2024</creationdate><title>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</title><author>Li, Dingquan ; Ma, Kede ; Wang, Jing ; Li, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c98b256eb14dd9d583fa111873a43988ba63d04934d5204ca2ea16741862b8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>coarse-to-fine super resolution</topic><topic>Decoding</topic><topic>Geometry</topic><topic>hierarchical prior</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>MPEG encoders</topic><topic>Octrees</topic><topic>Point cloud compression</topic><topic>Point cloud geometry compression</topic><topic>Superresolution</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dingquan</creatorcontrib><creatorcontrib>Ma, Kede</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dingquan</au><au>Ma, Kede</au><au>Wang, Jing</au><au>Li, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>1965</spage><epage>1976</epage><pages>1965-1976</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The Geometry-based Point Cloud Compression (G-PCC) has been developed by the Moving Picture Experts Group to compress point clouds efficiently. Nevertheless, in its lossy mode, the reconstructed point cloud by G-PCC often suffers from noticeable distortions due to naïve geometry quantization (i.e., grid downsampling). This paper proposes a hierarchical prior-based super resolution method for point cloud geometry compression. The content-dependent hierarchical prior is constructed at the encoder side, which enables coarse-to-fine super resolution of the point cloud geometry at the decoder side. A more accurate prior generally yields improved reconstruction performance, albeit at the cost of increased bits required to encode this piece of side information. Our experiments on the MPEG Cat1A dataset demonstrate substantial Bjøntegaard-delta bitrate savings, surpassing the performance of the octree-based and trisoup-based G-PCC v14. We provide our implementations for reproducible research at https://github.com/lidq92/mpeg-pcc-tmc13 .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38451766</pmid><doi>10.1109/TIP.2024.3372464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0140-0949</orcidid><orcidid>https://orcid.org/0000-0002-5549-9027</orcidid><orcidid>https://orcid.org/0000-0001-8608-1128</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024, Vol.33, p.1965-1976
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2969048111
source IEEE Electronic Library (IEL)
subjects coarse-to-fine super resolution
Decoding
Geometry
hierarchical prior
Image coding
Image reconstruction
MPEG encoders
Octrees
Point cloud compression
Point cloud geometry compression
Superresolution
Three-dimensional displays
title Hierarchical Prior-Based Super Resolution for Point Cloud Geometry Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Prior-Based%20Super%20Resolution%20for%20Point%20Cloud%20Geometry%20Compression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Dingquan&rft.date=2024&rft.volume=33&rft.spage=1965&rft.epage=1976&rft.pages=1965-1976&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3372464&rft_dat=%3Cproquest_RIE%3E2954779063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969048111&rft_id=info:pmid/38451766&rft_ieee_id=10462914&rfr_iscdi=true