RL in Markov Games with Independent Function Approximation: Improved Sample Complexity Bound under the Local Access Model

Efficiently learning equilibria with large state and action spaces in general-sum Markov games while overcoming the curse of multi-agency is a challenging problem. Recent works have attempted to solve this problem by employing independent linear function classes to approximate the marginal \(Q\)-val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Fan, Junyi, Han, Yuxuan, Zeng, Jialin, Jian-Feng, Cai, Wang, Yang, Yang, Xiang, Zhang, Jiheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!