From Melting Pots to Misrepresentations: Exploring Harms in Generative AI

With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regardin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Gautam, Sanjana, Pranav Narayanan Venkit, Ghosh, Sourojit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gautam, Sanjana
Pranav Narayanan Venkit
Ghosh, Sourojit
description With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected `majority' demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations, marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2968601542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968601542</sourcerecordid><originalsourceid>FETCH-proquest_journals_29686015423</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6C-uumnWL0PQQdOguHqZY0V2bWaPHz6AH6PQfvn8hAqV1HOWJUisRMndSSpXtVJrqQNQluQEu2HtjH3B1nsE7uBgmHAkZrW-9cZYPULzH3tH3qloaGIyFM1qk2V8Ix3ojlve2Zwx_XYttWdxOVTSSe07IvuncRHamRu2zPJNxmij93_UBafc8GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2968601542</pqid></control><display><type>article</type><title>From Melting Pots to Misrepresentations: Exploring Harms in Generative AI</title><source>Free E- Journals</source><creator>Gautam, Sanjana ; Pranav Narayanan Venkit ; Ghosh, Sourojit</creator><creatorcontrib>Gautam, Sanjana ; Pranav Narayanan Venkit ; Ghosh, Sourojit</creatorcontrib><description>With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected `majority' demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations, marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Context ; Generative artificial intelligence ; Minority &amp; ethnic groups</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gautam, Sanjana</creatorcontrib><creatorcontrib>Pranav Narayanan Venkit</creatorcontrib><creatorcontrib>Ghosh, Sourojit</creatorcontrib><title>From Melting Pots to Misrepresentations: Exploring Harms in Generative AI</title><title>arXiv.org</title><description>With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected `majority' demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations, marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.</description><subject>Context</subject><subject>Generative artificial intelligence</subject><subject>Minority &amp; ethnic groups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6C-uumnWL0PQQdOguHqZY0V2bWaPHz6AH6PQfvn8hAqV1HOWJUisRMndSSpXtVJrqQNQluQEu2HtjH3B1nsE7uBgmHAkZrW-9cZYPULzH3tH3qloaGIyFM1qk2V8Ix3ojlve2Zwx_XYttWdxOVTSSe07IvuncRHamRu2zPJNxmij93_UBafc8GA</recordid><startdate>20240316</startdate><enddate>20240316</enddate><creator>Gautam, Sanjana</creator><creator>Pranav Narayanan Venkit</creator><creator>Ghosh, Sourojit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240316</creationdate><title>From Melting Pots to Misrepresentations: Exploring Harms in Generative AI</title><author>Gautam, Sanjana ; Pranav Narayanan Venkit ; Ghosh, Sourojit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29686015423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Context</topic><topic>Generative artificial intelligence</topic><topic>Minority &amp; ethnic groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Gautam, Sanjana</creatorcontrib><creatorcontrib>Pranav Narayanan Venkit</creatorcontrib><creatorcontrib>Ghosh, Sourojit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautam, Sanjana</au><au>Pranav Narayanan Venkit</au><au>Ghosh, Sourojit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From Melting Pots to Misrepresentations: Exploring Harms in Generative AI</atitle><jtitle>arXiv.org</jtitle><date>2024-03-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected `majority' demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations, marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2968601542
source Free E- Journals
subjects Context
Generative artificial intelligence
Minority & ethnic groups
title From Melting Pots to Misrepresentations: Exploring Harms in Generative AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20Melting%20Pots%20to%20Misrepresentations:%20Exploring%20Harms%20in%20Generative%20AI&rft.jtitle=arXiv.org&rft.au=Gautam,%20Sanjana&rft.date=2024-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2968601542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2968601542&rft_id=info:pmid/&rfr_iscdi=true