Lyapunov functions and global stability analysis for epidemic model with n-infectious
In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between...
Gespeichert in:
Veröffentlicht in: | Indian journal of physics 2024-05, Vol.98 (5), p.1913-1922 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1922 |
---|---|
container_issue | 5 |
container_start_page | 1913 |
container_title | Indian journal of physics |
container_volume | 98 |
creator | Omar, F. M. Sohaly, M A El-Metwally, H. |
description | In this paper, an epidemic
SI
model with
n
-infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The
n
-basic reproduction ratios
R
1
,
R
2
, …,
R
n
are computed, and the basic reproduction number (
R
0
) is the max value between this ratios is obtained. For,
j
=
1
,
2
,
.
.
.
,
n
when
R
j
is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results. |
doi_str_mv | 10.1007/s12648-023-02895-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2967154045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967154045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA62hu82qXMviCATfOOiRpMmbotDVplf57OzOCOxeXe7mcczh8CN0AvQNK1X2GQvKS0ILNU1aCyBO0oJXipCq5OD3cjAAX5Tm6yHlLqaxAiQVarybTj233hcPYuiF2bcamrfGm6axpcB6MjU0cpvlpminHjEOXsO9j7XfR4V1X-wZ_x-EDtyS2we8jxnyFzoJpsr_-3Zdo_fT4vnwhq7fn1-XDijgGfCAgGFALTglVc1lKAGlBBgHGCVaH2obCF1Yox5lwoKwvrS1qzzy31IA17BLdHnP71H2OPg96241pbpp1UUkFglMuZlVxVLnU5Zx80H2KO5MmDVTv8ekjPj3j0wd8Ws4mdjTlWdxufPqL_sf1A-C6dBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967154045</pqid></control><display><type>article</type><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><source>Springer Nature - Complete Springer Journals</source><creator>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</creator><creatorcontrib>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</creatorcontrib><description>In this paper, an epidemic
SI
model with
n
-infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The
n
-basic reproduction ratios
R
1
,
R
2
, …,
R
n
are computed, and the basic reproduction number (
R
0
) is the max value between this ratios is obtained. For,
j
=
1
,
2
,
.
.
.
,
n
when
R
j
is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-023-02895-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Epidemics ; Liapunov functions ; Mathematical models ; Original Paper ; Physics ; Physics and Astronomy ; Stability analysis</subject><ispartof>Indian journal of physics, 2024-05, Vol.98 (5), p.1913-1922</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</cites><orcidid>0000-0001-5971-0048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-023-02895-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-023-02895-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Omar, F. M.</creatorcontrib><creatorcontrib>Sohaly, M A</creatorcontrib><creatorcontrib>El-Metwally, H.</creatorcontrib><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>In this paper, an epidemic
SI
model with
n
-infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The
n
-basic reproduction ratios
R
1
,
R
2
, …,
R
n
are computed, and the basic reproduction number (
R
0
) is the max value between this ratios is obtained. For,
j
=
1
,
2
,
.
.
.
,
n
when
R
j
is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</description><subject>Astrophysics and Astroparticles</subject><subject>Epidemics</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability analysis</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gKuA62hu82qXMviCATfOOiRpMmbotDVplf57OzOCOxeXe7mcczh8CN0AvQNK1X2GQvKS0ILNU1aCyBO0oJXipCq5OD3cjAAX5Tm6yHlLqaxAiQVarybTj233hcPYuiF2bcamrfGm6axpcB6MjU0cpvlpminHjEOXsO9j7XfR4V1X-wZ_x-EDtyS2we8jxnyFzoJpsr_-3Zdo_fT4vnwhq7fn1-XDijgGfCAgGFALTglVc1lKAGlBBgHGCVaH2obCF1Yox5lwoKwvrS1qzzy31IA17BLdHnP71H2OPg96241pbpp1UUkFglMuZlVxVLnU5Zx80H2KO5MmDVTv8ekjPj3j0wd8Ws4mdjTlWdxufPqL_sf1A-C6dBU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Omar, F. M.</creator><creator>Sohaly, M A</creator><creator>El-Metwally, H.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5971-0048</orcidid></search><sort><creationdate>20240501</creationdate><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><author>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Epidemics</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omar, F. M.</creatorcontrib><creatorcontrib>Sohaly, M A</creatorcontrib><creatorcontrib>El-Metwally, H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omar, F. M.</au><au>Sohaly, M A</au><au>El-Metwally, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov functions and global stability analysis for epidemic model with n-infectious</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>98</volume><issue>5</issue><spage>1913</spage><epage>1922</epage><pages>1913-1922</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>In this paper, an epidemic
SI
model with
n
-infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The
n
-basic reproduction ratios
R
1
,
R
2
, …,
R
n
are computed, and the basic reproduction number (
R
0
) is the max value between this ratios is obtained. For,
j
=
1
,
2
,
.
.
.
,
n
when
R
j
is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-023-02895-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5971-0048</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1458 |
ispartof | Indian journal of physics, 2024-05, Vol.98 (5), p.1913-1922 |
issn | 0973-1458 0974-9845 |
language | eng |
recordid | cdi_proquest_journals_2967154045 |
source | Springer Nature - Complete Springer Journals |
subjects | Astrophysics and Astroparticles Epidemics Liapunov functions Mathematical models Original Paper Physics Physics and Astronomy Stability analysis |
title | Lyapunov functions and global stability analysis for epidemic model with n-infectious |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20functions%20and%20global%20stability%20analysis%20for%20epidemic%20model%20with%20n-infectious&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Omar,%20F.%20M.&rft.date=2024-05-01&rft.volume=98&rft.issue=5&rft.spage=1913&rft.epage=1922&rft.pages=1913-1922&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-023-02895-6&rft_dat=%3Cproquest_cross%3E2967154045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967154045&rft_id=info:pmid/&rfr_iscdi=true |