Lyapunov functions and global stability analysis for epidemic model with n-infectious

In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2024-05, Vol.98 (5), p.1913-1922
Hauptverfasser: Omar, F. M., Sohaly, M A, El-Metwally, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1922
container_issue 5
container_start_page 1913
container_title Indian journal of physics
container_volume 98
creator Omar, F. M.
Sohaly, M A
El-Metwally, H.
description In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between this ratios is obtained. For, j = 1 , 2 , . . . , n when R j is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.
doi_str_mv 10.1007/s12648-023-02895-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2967154045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967154045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA62hu82qXMviCATfOOiRpMmbotDVplf57OzOCOxeXe7mcczh8CN0AvQNK1X2GQvKS0ILNU1aCyBO0oJXipCq5OD3cjAAX5Tm6yHlLqaxAiQVarybTj233hcPYuiF2bcamrfGm6axpcB6MjU0cpvlpminHjEOXsO9j7XfR4V1X-wZ_x-EDtyS2we8jxnyFzoJpsr_-3Zdo_fT4vnwhq7fn1-XDijgGfCAgGFALTglVc1lKAGlBBgHGCVaH2obCF1Yox5lwoKwvrS1qzzy31IA17BLdHnP71H2OPg96241pbpp1UUkFglMuZlVxVLnU5Zx80H2KO5MmDVTv8ekjPj3j0wd8Ws4mdjTlWdxufPqL_sf1A-C6dBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967154045</pqid></control><display><type>article</type><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><source>Springer Nature - Complete Springer Journals</source><creator>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</creator><creatorcontrib>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</creatorcontrib><description>In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between this ratios is obtained. For, j = 1 , 2 , . . . , n when R j is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-023-02895-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Epidemics ; Liapunov functions ; Mathematical models ; Original Paper ; Physics ; Physics and Astronomy ; Stability analysis</subject><ispartof>Indian journal of physics, 2024-05, Vol.98 (5), p.1913-1922</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</cites><orcidid>0000-0001-5971-0048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-023-02895-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-023-02895-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Omar, F. M.</creatorcontrib><creatorcontrib>Sohaly, M A</creatorcontrib><creatorcontrib>El-Metwally, H.</creatorcontrib><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between this ratios is obtained. For, j = 1 , 2 , . . . , n when R j is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</description><subject>Astrophysics and Astroparticles</subject><subject>Epidemics</subject><subject>Liapunov functions</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability analysis</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOD7-gKuA62hu82qXMviCATfOOiRpMmbotDVplf57OzOCOxeXe7mcczh8CN0AvQNK1X2GQvKS0ILNU1aCyBO0oJXipCq5OD3cjAAX5Tm6yHlLqaxAiQVarybTj233hcPYuiF2bcamrfGm6axpcB6MjU0cpvlpminHjEOXsO9j7XfR4V1X-wZ_x-EDtyS2we8jxnyFzoJpsr_-3Zdo_fT4vnwhq7fn1-XDijgGfCAgGFALTglVc1lKAGlBBgHGCVaH2obCF1Yox5lwoKwvrS1qzzy31IA17BLdHnP71H2OPg96241pbpp1UUkFglMuZlVxVLnU5Zx80H2KO5MmDVTv8ekjPj3j0wd8Ws4mdjTlWdxufPqL_sf1A-C6dBU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Omar, F. M.</creator><creator>Sohaly, M A</creator><creator>El-Metwally, H.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5971-0048</orcidid></search><sort><creationdate>20240501</creationdate><title>Lyapunov functions and global stability analysis for epidemic model with n-infectious</title><author>Omar, F. M. ; Sohaly, M A ; El-Metwally, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-15310b1c757d4686116b16f51ac53dfdbf2e2b57c435c17be8bb2de3e4b0a1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Epidemics</topic><topic>Liapunov functions</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omar, F. M.</creatorcontrib><creatorcontrib>Sohaly, M A</creatorcontrib><creatorcontrib>El-Metwally, H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omar, F. M.</au><au>Sohaly, M A</au><au>El-Metwally, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov functions and global stability analysis for epidemic model with n-infectious</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>98</volume><issue>5</issue><spage>1913</spage><epage>1922</epage><pages>1913-1922</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>In this paper, an epidemic SI model with n -infectious stages is studied. Lyapunov functions are used to conduct the global stability analysis for equilibrium points. The n -basic reproduction ratios R 1 , R 2 , …, R n are computed, and the basic reproduction number ( R 0 ) is the max value between this ratios is obtained. For, j = 1 , 2 , . . . , n when R j is less than one, all strains die out, and if it is greater than one, then persists. The disease-free and endemic equilibrium points are found, and we studied the global stability for them by using the direct Lyapunov functions. The Maple program is used for carrying a numerical simulations to support the analytically results.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-023-02895-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5971-0048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2024-05, Vol.98 (5), p.1913-1922
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_journals_2967154045
source Springer Nature - Complete Springer Journals
subjects Astrophysics and Astroparticles
Epidemics
Liapunov functions
Mathematical models
Original Paper
Physics
Physics and Astronomy
Stability analysis
title Lyapunov functions and global stability analysis for epidemic model with n-infectious
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20functions%20and%20global%20stability%20analysis%20for%20epidemic%20model%20with%20n-infectious&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Omar,%20F.%20M.&rft.date=2024-05-01&rft.volume=98&rft.issue=5&rft.spage=1913&rft.epage=1922&rft.pages=1913-1922&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-023-02895-6&rft_dat=%3Cproquest_cross%3E2967154045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967154045&rft_id=info:pmid/&rfr_iscdi=true