Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches

Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nondestructive evaluation 2024-06, Vol.43 (2), Article 38
Hauptverfasser: Zhang, Baoxin, Wang, Xiaopeng, Cui, Jinhan, Wu, Juntao, Xiong, Zhi, Zhang, Wenpin, Yu, Xinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of nondestructive evaluation
container_volume 43
creator Zhang, Baoxin
Wang, Xiaopeng
Cui, Jinhan
Wu, Juntao
Xiong, Zhi
Zhang, Wenpin
Yu, Xinghua
description Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.
doi_str_mv 10.1007/s10921-024-01047-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2967153964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967153964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-2jTLMo4_MOBmxGVI06Tt0KY16Qh9eztWcOfq25x778cB4Jbge4KxeIgES0oQphxhgrlA0xlYkUQwxLOUnoMVJjJBksrsElzFeMAYy0yQFei2vtbeNL6CH7Yt4auPgzVj03u4r0N_rGq46btBBz02XxbmXrdTbCLsHdwHXTYnUrcwb6s-NGPdRah9CR-tHeDO6uBPxfkwhF6b2sZrcOF0G-3N712D96ftfvOCdm_Pr5t8hwwVeETOMMtlqUuKOaeFcZoJWRQ0pUWZcskt0ULq0hhhs1Q4hoU0xBnHEmt05ihbg7uldx7-PNo4qkN_DPOjUVGZCpIwmfKZogtlQh9jsE4Noel0mBTB6qRVLVrVrFX9aFXTHGJLKM6wr2z4q_4n9Q1NMX2l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967153964</pqid></control><display><type>article</type><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</creator><creatorcontrib>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</creatorcontrib><description>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</description><identifier>ISSN: 0195-9298</identifier><identifier>EISSN: 1573-4862</identifier><identifier>DOI: 10.1007/s10921-024-01047-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Characterization and Evaluation of Materials ; Classical Mechanics ; Control ; Deep learning ; Dynamical Systems ; Engineering ; Inspection ; Machine learning ; Nondestructive testing ; Segmentation ; Solid Mechanics ; Vibration ; Weld defects ; Welding</subject><ispartof>Journal of nondestructive evaluation, 2024-06, Vol.43 (2), Article 38</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10921-024-01047-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10921-024-01047-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Baoxin</creatorcontrib><creatorcontrib>Wang, Xiaopeng</creatorcontrib><creatorcontrib>Cui, Jinhan</creatorcontrib><creatorcontrib>Wu, Juntao</creatorcontrib><creatorcontrib>Xiong, Zhi</creatorcontrib><creatorcontrib>Zhang, Wenpin</creatorcontrib><creatorcontrib>Yu, Xinghua</creatorcontrib><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><title>Journal of nondestructive evaluation</title><addtitle>J Nondestruct Eval</addtitle><description>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</description><subject>Algorithms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Segmentation</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><subject>Weld defects</subject><subject>Welding</subject><issn>0195-9298</issn><issn>1573-4862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-2jTLMo4_MOBmxGVI06Tt0KY16Qh9eztWcOfq25x778cB4Jbge4KxeIgES0oQphxhgrlA0xlYkUQwxLOUnoMVJjJBksrsElzFeMAYy0yQFei2vtbeNL6CH7Yt4auPgzVj03u4r0N_rGq46btBBz02XxbmXrdTbCLsHdwHXTYnUrcwb6s-NGPdRah9CR-tHeDO6uBPxfkwhF6b2sZrcOF0G-3N712D96ftfvOCdm_Pr5t8hwwVeETOMMtlqUuKOaeFcZoJWRQ0pUWZcskt0ULq0hhhs1Q4hoU0xBnHEmt05ihbg7uldx7-PNo4qkN_DPOjUVGZCpIwmfKZogtlQh9jsE4Noel0mBTB6qRVLVrVrFX9aFXTHGJLKM6wr2z4q_4n9Q1NMX2l</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Baoxin</creator><creator>Wang, Xiaopeng</creator><creator>Cui, Jinhan</creator><creator>Wu, Juntao</creator><creator>Xiong, Zhi</creator><creator>Zhang, Wenpin</creator><creator>Yu, Xinghua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><author>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Segmentation</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><topic>Weld defects</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Baoxin</creatorcontrib><creatorcontrib>Wang, Xiaopeng</creatorcontrib><creatorcontrib>Cui, Jinhan</creatorcontrib><creatorcontrib>Wu, Juntao</creatorcontrib><creatorcontrib>Xiong, Zhi</creatorcontrib><creatorcontrib>Zhang, Wenpin</creatorcontrib><creatorcontrib>Yu, Xinghua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nondestructive evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Baoxin</au><au>Wang, Xiaopeng</au><au>Cui, Jinhan</au><au>Wu, Juntao</au><au>Xiong, Zhi</au><au>Zhang, Wenpin</au><au>Yu, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</atitle><jtitle>Journal of nondestructive evaluation</jtitle><stitle>J Nondestruct Eval</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><artnum>38</artnum><issn>0195-9298</issn><eissn>1573-4862</eissn><abstract>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10921-024-01047-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0195-9298
ispartof Journal of nondestructive evaluation, 2024-06, Vol.43 (2), Article 38
issn 0195-9298
1573-4862
language eng
recordid cdi_proquest_journals_2967153964
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Characterization and Evaluation of Materials
Classical Mechanics
Control
Deep learning
Dynamical Systems
Engineering
Inspection
Machine learning
Nondestructive testing
Segmentation
Solid Mechanics
Vibration
Weld defects
Welding
title Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Weld%20Inspection%20Through%20Comparative%20Analysis%20of%20Traditional%20Algorithms%20and%20Deep%20Learning%20Approaches&rft.jtitle=Journal%20of%20nondestructive%20evaluation&rft.au=Zhang,%20Baoxin&rft.date=2024-06-01&rft.volume=43&rft.issue=2&rft.artnum=38&rft.issn=0195-9298&rft.eissn=1573-4862&rft_id=info:doi/10.1007/s10921-024-01047-y&rft_dat=%3Cproquest_cross%3E2967153964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967153964&rft_id=info:pmid/&rfr_iscdi=true