Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches
Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) met...
Gespeichert in:
Veröffentlicht in: | Journal of nondestructive evaluation 2024-06, Vol.43 (2), Article 38 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of nondestructive evaluation |
container_volume | 43 |
creator | Zhang, Baoxin Wang, Xiaopeng Cui, Jinhan Wu, Juntao Xiong, Zhi Zhang, Wenpin Yu, Xinghua |
description | Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection. |
doi_str_mv | 10.1007/s10921-024-01047-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2967153964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967153964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-2jTLMo4_MOBmxGVI06Tt0KY16Qh9eztWcOfq25x778cB4Jbge4KxeIgES0oQphxhgrlA0xlYkUQwxLOUnoMVJjJBksrsElzFeMAYy0yQFei2vtbeNL6CH7Yt4auPgzVj03u4r0N_rGq46btBBz02XxbmXrdTbCLsHdwHXTYnUrcwb6s-NGPdRah9CR-tHeDO6uBPxfkwhF6b2sZrcOF0G-3N712D96ftfvOCdm_Pr5t8hwwVeETOMMtlqUuKOaeFcZoJWRQ0pUWZcskt0ULq0hhhs1Q4hoU0xBnHEmt05ihbg7uldx7-PNo4qkN_DPOjUVGZCpIwmfKZogtlQh9jsE4Noel0mBTB6qRVLVrVrFX9aFXTHGJLKM6wr2z4q_4n9Q1NMX2l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967153964</pqid></control><display><type>article</type><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</creator><creatorcontrib>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</creatorcontrib><description>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</description><identifier>ISSN: 0195-9298</identifier><identifier>EISSN: 1573-4862</identifier><identifier>DOI: 10.1007/s10921-024-01047-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Characterization and Evaluation of Materials ; Classical Mechanics ; Control ; Deep learning ; Dynamical Systems ; Engineering ; Inspection ; Machine learning ; Nondestructive testing ; Segmentation ; Solid Mechanics ; Vibration ; Weld defects ; Welding</subject><ispartof>Journal of nondestructive evaluation, 2024-06, Vol.43 (2), Article 38</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10921-024-01047-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10921-024-01047-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Baoxin</creatorcontrib><creatorcontrib>Wang, Xiaopeng</creatorcontrib><creatorcontrib>Cui, Jinhan</creatorcontrib><creatorcontrib>Wu, Juntao</creatorcontrib><creatorcontrib>Xiong, Zhi</creatorcontrib><creatorcontrib>Zhang, Wenpin</creatorcontrib><creatorcontrib>Yu, Xinghua</creatorcontrib><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><title>Journal of nondestructive evaluation</title><addtitle>J Nondestruct Eval</addtitle><description>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</description><subject>Algorithms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Segmentation</subject><subject>Solid Mechanics</subject><subject>Vibration</subject><subject>Weld defects</subject><subject>Welding</subject><issn>0195-9298</issn><issn>1573-4862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAYRYMoOI6-gKuA62j-2jTLMo4_MOBmxGVI06Tt0KY16Qh9eztWcOfq25x778cB4Jbge4KxeIgES0oQphxhgrlA0xlYkUQwxLOUnoMVJjJBksrsElzFeMAYy0yQFei2vtbeNL6CH7Yt4auPgzVj03u4r0N_rGq46btBBz02XxbmXrdTbCLsHdwHXTYnUrcwb6s-NGPdRah9CR-tHeDO6uBPxfkwhF6b2sZrcOF0G-3N712D96ftfvOCdm_Pr5t8hwwVeETOMMtlqUuKOaeFcZoJWRQ0pUWZcskt0ULq0hhhs1Q4hoU0xBnHEmt05ihbg7uldx7-PNo4qkN_DPOjUVGZCpIwmfKZogtlQh9jsE4Noel0mBTB6qRVLVrVrFX9aFXTHGJLKM6wr2z4q_4n9Q1NMX2l</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Baoxin</creator><creator>Wang, Xiaopeng</creator><creator>Cui, Jinhan</creator><creator>Wu, Juntao</creator><creator>Xiong, Zhi</creator><creator>Zhang, Wenpin</creator><creator>Yu, Xinghua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</title><author>Zhang, Baoxin ; Wang, Xiaopeng ; Cui, Jinhan ; Wu, Juntao ; Xiong, Zhi ; Zhang, Wenpin ; Yu, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fc3e49dad20442bcfa379bb262bd6494e1a79adcc7e867f3079c1fcf35eca8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Segmentation</topic><topic>Solid Mechanics</topic><topic>Vibration</topic><topic>Weld defects</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Baoxin</creatorcontrib><creatorcontrib>Wang, Xiaopeng</creatorcontrib><creatorcontrib>Cui, Jinhan</creatorcontrib><creatorcontrib>Wu, Juntao</creatorcontrib><creatorcontrib>Xiong, Zhi</creatorcontrib><creatorcontrib>Zhang, Wenpin</creatorcontrib><creatorcontrib>Yu, Xinghua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nondestructive evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Baoxin</au><au>Wang, Xiaopeng</au><au>Cui, Jinhan</au><au>Wu, Juntao</au><au>Xiong, Zhi</au><au>Zhang, Wenpin</au><au>Yu, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches</atitle><jtitle>Journal of nondestructive evaluation</jtitle><stitle>J Nondestruct Eval</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><artnum>38</artnum><issn>0195-9298</issn><eissn>1573-4862</eissn><abstract>Automated inspection is vital in modern industrial manufacturing, optimizing production processes and ensuring product quality. Welding, a widely used joining technique, is susceptible to defects like porosity and cracks, compromising product reliability. Traditional nondestructive testing (NDT) methods suffer from inefficiency and limited accuracy. Many researchers have tried to apply deep learning for defect detection to address these limitations. This study compares traditional algorithms with deep learning methods, specifically evaluating the SwinUNet model for weld segmentation. The model achieves an impressive F1 score of 96.31, surpassing traditional algorithms. Feature analysis utilizing class activation maps confirms the model's robust recognition and generalization capabilities. Additionally, segmentation results for different welding defects were compared among various models, further substantiating the recognition capabilities of SwinUNet. The findings contribute to the automation of weld identification and segmentation, driving industrial production efficiency and enhancing defect detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10921-024-01047-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-9298 |
ispartof | Journal of nondestructive evaluation, 2024-06, Vol.43 (2), Article 38 |
issn | 0195-9298 1573-4862 |
language | eng |
recordid | cdi_proquest_journals_2967153964 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Characterization and Evaluation of Materials Classical Mechanics Control Deep learning Dynamical Systems Engineering Inspection Machine learning Nondestructive testing Segmentation Solid Mechanics Vibration Weld defects Welding |
title | Enhancing Weld Inspection Through Comparative Analysis of Traditional Algorithms and Deep Learning Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Weld%20Inspection%20Through%20Comparative%20Analysis%20of%20Traditional%20Algorithms%20and%20Deep%20Learning%20Approaches&rft.jtitle=Journal%20of%20nondestructive%20evaluation&rft.au=Zhang,%20Baoxin&rft.date=2024-06-01&rft.volume=43&rft.issue=2&rft.artnum=38&rft.issn=0195-9298&rft.eissn=1573-4862&rft_id=info:doi/10.1007/s10921-024-01047-y&rft_dat=%3Cproquest_cross%3E2967153964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967153964&rft_id=info:pmid/&rfr_iscdi=true |