Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques
Recently, there has been a global shift toward clean energy sources, and wind turbines (WT) play a crucial role as one of the most popular renewable generation sources. Despite their significant potential, WTs incur high operation and maintenance (O &M) costs due to the challenging operational c...
Gespeichert in:
Veröffentlicht in: | Journal of control, automation & electrical systems automation & electrical systems, 2024-04, Vol.35 (2), p.337-345 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 2 |
container_start_page | 337 |
container_title | Journal of control, automation & electrical systems |
container_volume | 35 |
creator | de Souza Pereira Gomes, Gabriel Moreira de Andrade Lopes, Sofia Carrijo Polonio Araujo, Daniel Andrade Flauzino, Rogério Marques Pinto, Murilo Eduardo Guerra Alves, Marcos |
description | Recently, there has been a global shift toward clean energy sources, and wind turbines (WT) play a crucial role as one of the most popular renewable generation sources. Despite their significant potential, WTs incur high operation and maintenance (O &M) costs due to the challenging operational conditions they face, such as pollution and atmospheric discharges. These stresses reduce the life expectancy of such equipment by increasing the occurrence of failures, thereby diminishing wind farm reliability. To mitigate these failure events, the prediction of the remaining useful life (RUL) of WTs is essential. This prediction, specifically direct RUL prediction, is often made by data-driven methods. However, to achieve competitive levels of accuracy, data-driven methods found in the literature often rely on extensive datasets or high-complexity deep learning models, because historical data containing failures in WTs are scarce, which presents challenges in practical implementation. This paper introduces a novel methodology for rotor RUL prediction in WTs. This method achieved an accuracy of over
80
%
using simple machine learning algorithms trained with limited data, making it easy to implement and cost-effective. It is expected that this methodology will assist energy companies in optimizing their operation and maintenance planning processes and contribute to the national energy sector’s progress toward achieving global sustainable goals. |
doi_str_mv | 10.1007/s40313-024-01076-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2967153880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967153880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185y-2418ad840b75fafa75ee0a28d87db45912bf5ab1ed7d55609a5a43e2523938453</originalsourceid><addsrcrecordid>eNp9kEtLw0AQxxdRsNR-AU8Bz9F9ZJvNUeoTIoqmeFwmyaTdkm7qbnLItzdpRG-eZpj5P-BHyCWj14zS-MZHVDARUh6FlNF4GfYnZMZZIkOhkuT0d1f0nCy831FKmWKcSTkj8GlsGWSdy43F4B33YKyxm2DtserqIDUVBm8OS1O0prHDeXx-7KGugztowWMbwBDwAsV2DEgR3NGfYbG15qtDf0HOKqg9Ln7mnKwf7rPVU5i-Pj6vbtOwYEr2IY-YglJFNI9lBRXEEpECV6WKyzySCeN5JSFnWMallEuagIRIIJdcJEJFUszJ1ZR7cM3Y2-pd0zk7VGqeLGMmRwCDik-qwjXeO6z0wZk9uF4zqkeaeqKpB5r6SFP3g0lMJj-I7QbdX_Q_rm_DgHe4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967153880</pqid></control><display><type>article</type><title>Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques</title><source>SpringerNature Journals</source><creator>de Souza Pereira Gomes, Gabriel ; Moreira de Andrade Lopes, Sofia ; Carrijo Polonio Araujo, Daniel ; Andrade Flauzino, Rogério ; Marques Pinto, Murilo ; Eduardo Guerra Alves, Marcos</creator><creatorcontrib>de Souza Pereira Gomes, Gabriel ; Moreira de Andrade Lopes, Sofia ; Carrijo Polonio Araujo, Daniel ; Andrade Flauzino, Rogério ; Marques Pinto, Murilo ; Eduardo Guerra Alves, Marcos</creatorcontrib><description>Recently, there has been a global shift toward clean energy sources, and wind turbines (WT) play a crucial role as one of the most popular renewable generation sources. Despite their significant potential, WTs incur high operation and maintenance (O &M) costs due to the challenging operational conditions they face, such as pollution and atmospheric discharges. These stresses reduce the life expectancy of such equipment by increasing the occurrence of failures, thereby diminishing wind farm reliability. To mitigate these failure events, the prediction of the remaining useful life (RUL) of WTs is essential. This prediction, specifically direct RUL prediction, is often made by data-driven methods. However, to achieve competitive levels of accuracy, data-driven methods found in the literature often rely on extensive datasets or high-complexity deep learning models, because historical data containing failures in WTs are scarce, which presents challenges in practical implementation. This paper introduces a novel methodology for rotor RUL prediction in WTs. This method achieved an accuracy of over
80
%
using simple machine learning algorithms trained with limited data, making it easy to implement and cost-effective. It is expected that this methodology will assist energy companies in optimizing their operation and maintenance planning processes and contribute to the national energy sector’s progress toward achieving global sustainable goals.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-024-01076-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Atmospheric models ; Clean energy ; Control ; Control and Systems Theory ; Datasets ; Deep learning ; Electrical Engineering ; Energy industry ; Engineering ; Life expectancy ; Life prediction ; Machine learning ; Maintenance ; Mechatronics ; Robotics ; Robotics and Automation ; Useful life ; Wind power ; Wind turbines</subject><ispartof>Journal of control, automation & electrical systems, 2024-04, Vol.35 (2), p.337-345</ispartof><rights>Brazilian Society for Automatics--SBA 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185y-2418ad840b75fafa75ee0a28d87db45912bf5ab1ed7d55609a5a43e2523938453</cites><orcidid>0000-0003-4781-8099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-024-01076-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-024-01076-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Souza Pereira Gomes, Gabriel</creatorcontrib><creatorcontrib>Moreira de Andrade Lopes, Sofia</creatorcontrib><creatorcontrib>Carrijo Polonio Araujo, Daniel</creatorcontrib><creatorcontrib>Andrade Flauzino, Rogério</creatorcontrib><creatorcontrib>Marques Pinto, Murilo</creatorcontrib><creatorcontrib>Eduardo Guerra Alves, Marcos</creatorcontrib><title>Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques</title><title>Journal of control, automation & electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Recently, there has been a global shift toward clean energy sources, and wind turbines (WT) play a crucial role as one of the most popular renewable generation sources. Despite their significant potential, WTs incur high operation and maintenance (O &M) costs due to the challenging operational conditions they face, such as pollution and atmospheric discharges. These stresses reduce the life expectancy of such equipment by increasing the occurrence of failures, thereby diminishing wind farm reliability. To mitigate these failure events, the prediction of the remaining useful life (RUL) of WTs is essential. This prediction, specifically direct RUL prediction, is often made by data-driven methods. However, to achieve competitive levels of accuracy, data-driven methods found in the literature often rely on extensive datasets or high-complexity deep learning models, because historical data containing failures in WTs are scarce, which presents challenges in practical implementation. This paper introduces a novel methodology for rotor RUL prediction in WTs. This method achieved an accuracy of over
80
%
using simple machine learning algorithms trained with limited data, making it easy to implement and cost-effective. It is expected that this methodology will assist energy companies in optimizing their operation and maintenance planning processes and contribute to the national energy sector’s progress toward achieving global sustainable goals.</description><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Clean energy</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Energy industry</subject><subject>Engineering</subject><subject>Life expectancy</subject><subject>Life prediction</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Useful life</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQxxdRsNR-AU8Bz9F9ZJvNUeoTIoqmeFwmyaTdkm7qbnLItzdpRG-eZpj5P-BHyCWj14zS-MZHVDARUh6FlNF4GfYnZMZZIkOhkuT0d1f0nCy831FKmWKcSTkj8GlsGWSdy43F4B33YKyxm2DtserqIDUVBm8OS1O0prHDeXx-7KGugztowWMbwBDwAsV2DEgR3NGfYbG15qtDf0HOKqg9Ln7mnKwf7rPVU5i-Pj6vbtOwYEr2IY-YglJFNI9lBRXEEpECV6WKyzySCeN5JSFnWMallEuagIRIIJdcJEJFUszJ1ZR7cM3Y2-pd0zk7VGqeLGMmRwCDik-qwjXeO6z0wZk9uF4zqkeaeqKpB5r6SFP3g0lMJj-I7QbdX_Q_rm_DgHe4</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>de Souza Pereira Gomes, Gabriel</creator><creator>Moreira de Andrade Lopes, Sofia</creator><creator>Carrijo Polonio Araujo, Daniel</creator><creator>Andrade Flauzino, Rogério</creator><creator>Marques Pinto, Murilo</creator><creator>Eduardo Guerra Alves, Marcos</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4781-8099</orcidid></search><sort><creationdate>20240401</creationdate><title>Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques</title><author>de Souza Pereira Gomes, Gabriel ; Moreira de Andrade Lopes, Sofia ; Carrijo Polonio Araujo, Daniel ; Andrade Flauzino, Rogério ; Marques Pinto, Murilo ; Eduardo Guerra Alves, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185y-2418ad840b75fafa75ee0a28d87db45912bf5ab1ed7d55609a5a43e2523938453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Clean energy</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Energy industry</topic><topic>Engineering</topic><topic>Life expectancy</topic><topic>Life prediction</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Useful life</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>de Souza Pereira Gomes, Gabriel</creatorcontrib><creatorcontrib>Moreira de Andrade Lopes, Sofia</creatorcontrib><creatorcontrib>Carrijo Polonio Araujo, Daniel</creatorcontrib><creatorcontrib>Andrade Flauzino, Rogério</creatorcontrib><creatorcontrib>Marques Pinto, Murilo</creatorcontrib><creatorcontrib>Eduardo Guerra Alves, Marcos</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation & electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza Pereira Gomes, Gabriel</au><au>Moreira de Andrade Lopes, Sofia</au><au>Carrijo Polonio Araujo, Daniel</au><au>Andrade Flauzino, Rogério</au><au>Marques Pinto, Murilo</au><au>Eduardo Guerra Alves, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques</atitle><jtitle>Journal of control, automation & electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>337</spage><epage>345</epage><pages>337-345</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Recently, there has been a global shift toward clean energy sources, and wind turbines (WT) play a crucial role as one of the most popular renewable generation sources. Despite their significant potential, WTs incur high operation and maintenance (O &M) costs due to the challenging operational conditions they face, such as pollution and atmospheric discharges. These stresses reduce the life expectancy of such equipment by increasing the occurrence of failures, thereby diminishing wind farm reliability. To mitigate these failure events, the prediction of the remaining useful life (RUL) of WTs is essential. This prediction, specifically direct RUL prediction, is often made by data-driven methods. However, to achieve competitive levels of accuracy, data-driven methods found in the literature often rely on extensive datasets or high-complexity deep learning models, because historical data containing failures in WTs are scarce, which presents challenges in practical implementation. This paper introduces a novel methodology for rotor RUL prediction in WTs. This method achieved an accuracy of over
80
%
using simple machine learning algorithms trained with limited data, making it easy to implement and cost-effective. It is expected that this methodology will assist energy companies in optimizing their operation and maintenance planning processes and contribute to the national energy sector’s progress toward achieving global sustainable goals.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-024-01076-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4781-8099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-3880 |
ispartof | Journal of control, automation & electrical systems, 2024-04, Vol.35 (2), p.337-345 |
issn | 2195-3880 2195-3899 |
language | eng |
recordid | cdi_proquest_journals_2967153880 |
source | SpringerNature Journals |
subjects | Algorithms Atmospheric models Clean energy Control Control and Systems Theory Datasets Deep learning Electrical Engineering Energy industry Engineering Life expectancy Life prediction Machine learning Maintenance Mechatronics Robotics Robotics and Automation Useful life Wind power Wind turbines |
title | Wind Turbine Remaining Useful Life Prediction Using Small Dataset and Machine Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20Turbine%20Remaining%20Useful%20Life%20Prediction%20Using%20Small%20Dataset%20and%20Machine%20Learning%20Techniques&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=de%20Souza%20Pereira%20Gomes,%20Gabriel&rft.date=2024-04-01&rft.volume=35&rft.issue=2&rft.spage=337&rft.epage=345&rft.pages=337-345&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-024-01076-y&rft_dat=%3Cproquest_cross%3E2967153880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2967153880&rft_id=info:pmid/&rfr_iscdi=true |