Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis

Controlling the block ratios, and thus the material properties, of fully conjugated block copolymers (BCPs), remains one of the challenges to implementing BCPs in the field of organic electronic and photonic devices. Here, the synthesis of a fully conjugated BCP, P3HT- b -PTB7, was demonstrated in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer chemistry 2024-03, Vol.15 (12), p.1166-1172
Hauptverfasser: Lee, Seungjun, Kim, Gyung-Tak, Kim, Jueun, Kang, Taehoon, Earmme, Taeshik, Hwang, Ye-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 12
container_start_page 1166
container_title Polymer chemistry
container_volume 15
creator Lee, Seungjun
Kim, Gyung-Tak
Kim, Jueun
Kang, Taehoon
Earmme, Taeshik
Hwang, Ye-Jin
description Controlling the block ratios, and thus the material properties, of fully conjugated block copolymers (BCPs), remains one of the challenges to implementing BCPs in the field of organic electronic and photonic devices. Here, the synthesis of a fully conjugated BCP, P3HT- b -PTB7, was demonstrated in a customized flow reactor for the first time. The PTB7 block was synthesized by Stille polycondensation using a P3HT-Br macroinitiator and the reaction parameters (reaction time and the amount of injected P3HT-Br) were modified to precisely control the block ratio. Specifically, the P3HT : PTB7 block ratios ranged from 50 : 50 to 23 : 77 (w : w). We also confirmed the high reproducibility of the block copolymerization by obtaining a standard deviation of 2.94% in the number-averaged molecular weight through three repeated runs of the BCP synthesis. These BCPs exhibited distinctive optical and electrochemical properties. Furthermore, we conducted investigations into their photovoltaic properties, revealing a significantly enhanced short-circuit current ( J sc ) in organic solar cells when using BCP as the donor material in the active layer, compared to devices employing homopolymers or a physical blend of homopolymers as the donor. These results highlight the promising potential of using flow syntheses to precisely control block ratios of conjugated BCPs in a reproducible manner, thereby advancing high-performing organic semiconductors towards industrial applications. Successful synthesis of fully conjugated block copolymers (BCPs) with controlled block ratios has been achieved in a reproducible manner using a flow reactor.
doi_str_mv 10.1039/d3py01333b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2966351064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2966351064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-de167549eec600cfccc39af7268545183fd177be421f15aaee1c583c7914faa13</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgChbtxbsQ8CasJpuPbY5aP6FgD3rwtKTZSZuabtZkl7L_3q2VOpcZhocZeBG6oOSGEqZuK9b0hDLGFkdoRAuhMqVkfnyYBT9F45TWZChGec7kCNl5BOOSCzU2oW5j8DhYvAkeTOd1xFtwy1WLo25dSNjV2Hbe9zu77pa6hQovfDBfw6IJvt9ATLhLrl5i68MWp75uV5BcOkcnVvsE479-hj6eHt-nL9ns7fl1ejfLTM5Jm1VAZSG4AjCSEGONMUxpW-RyIrigE2YrWhQL4Dm1VGgNQI2YMFMoyq3WlJ2hq_3dJobvDlJbrkMX6-FlmSspmaBE8kFd75WJIaUItmyi2-jYl5SUuyjLBzb__I3yfsCXexyTObj_qNkPSLRyXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2966351064</pqid></control><display><type>article</type><title>Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lee, Seungjun ; Kim, Gyung-Tak ; Kim, Jueun ; Kang, Taehoon ; Earmme, Taeshik ; Hwang, Ye-Jin</creator><creatorcontrib>Lee, Seungjun ; Kim, Gyung-Tak ; Kim, Jueun ; Kang, Taehoon ; Earmme, Taeshik ; Hwang, Ye-Jin</creatorcontrib><description>Controlling the block ratios, and thus the material properties, of fully conjugated block copolymers (BCPs), remains one of the challenges to implementing BCPs in the field of organic electronic and photonic devices. Here, the synthesis of a fully conjugated BCP, P3HT- b -PTB7, was demonstrated in a customized flow reactor for the first time. The PTB7 block was synthesized by Stille polycondensation using a P3HT-Br macroinitiator and the reaction parameters (reaction time and the amount of injected P3HT-Br) were modified to precisely control the block ratio. Specifically, the P3HT : PTB7 block ratios ranged from 50 : 50 to 23 : 77 (w : w). We also confirmed the high reproducibility of the block copolymerization by obtaining a standard deviation of 2.94% in the number-averaged molecular weight through three repeated runs of the BCP synthesis. These BCPs exhibited distinctive optical and electrochemical properties. Furthermore, we conducted investigations into their photovoltaic properties, revealing a significantly enhanced short-circuit current ( J sc ) in organic solar cells when using BCP as the donor material in the active layer, compared to devices employing homopolymers or a physical blend of homopolymers as the donor. These results highlight the promising potential of using flow syntheses to precisely control block ratios of conjugated BCPs in a reproducible manner, thereby advancing high-performing organic semiconductors towards industrial applications. Successful synthesis of fully conjugated block copolymers (BCPs) with controlled block ratios has been achieved in a reproducible manner using a flow reactor.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/d3py01333b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Block copolymers ; Chemical synthesis ; Copolymerization ; Donor materials ; Electrochemical analysis ; Industrial applications ; Material properties ; Molecular weight ; Optical properties ; Organic semiconductors ; Parameter modification ; Photovoltaic cells ; Ratios ; Reproducibility ; Short circuit currents ; Solar cells</subject><ispartof>Polymer chemistry, 2024-03, Vol.15 (12), p.1166-1172</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-de167549eec600cfccc39af7268545183fd177be421f15aaee1c583c7914faa13</cites><orcidid>0000-0003-4632-7087 ; 0000-0002-4215-5786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Seungjun</creatorcontrib><creatorcontrib>Kim, Gyung-Tak</creatorcontrib><creatorcontrib>Kim, Jueun</creatorcontrib><creatorcontrib>Kang, Taehoon</creatorcontrib><creatorcontrib>Earmme, Taeshik</creatorcontrib><creatorcontrib>Hwang, Ye-Jin</creatorcontrib><title>Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis</title><title>Polymer chemistry</title><description>Controlling the block ratios, and thus the material properties, of fully conjugated block copolymers (BCPs), remains one of the challenges to implementing BCPs in the field of organic electronic and photonic devices. Here, the synthesis of a fully conjugated BCP, P3HT- b -PTB7, was demonstrated in a customized flow reactor for the first time. The PTB7 block was synthesized by Stille polycondensation using a P3HT-Br macroinitiator and the reaction parameters (reaction time and the amount of injected P3HT-Br) were modified to precisely control the block ratio. Specifically, the P3HT : PTB7 block ratios ranged from 50 : 50 to 23 : 77 (w : w). We also confirmed the high reproducibility of the block copolymerization by obtaining a standard deviation of 2.94% in the number-averaged molecular weight through three repeated runs of the BCP synthesis. These BCPs exhibited distinctive optical and electrochemical properties. Furthermore, we conducted investigations into their photovoltaic properties, revealing a significantly enhanced short-circuit current ( J sc ) in organic solar cells when using BCP as the donor material in the active layer, compared to devices employing homopolymers or a physical blend of homopolymers as the donor. These results highlight the promising potential of using flow syntheses to precisely control block ratios of conjugated BCPs in a reproducible manner, thereby advancing high-performing organic semiconductors towards industrial applications. Successful synthesis of fully conjugated block copolymers (BCPs) with controlled block ratios has been achieved in a reproducible manner using a flow reactor.</description><subject>Block copolymers</subject><subject>Chemical synthesis</subject><subject>Copolymerization</subject><subject>Donor materials</subject><subject>Electrochemical analysis</subject><subject>Industrial applications</subject><subject>Material properties</subject><subject>Molecular weight</subject><subject>Optical properties</subject><subject>Organic semiconductors</subject><subject>Parameter modification</subject><subject>Photovoltaic cells</subject><subject>Ratios</subject><subject>Reproducibility</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgChbtxbsQ8CasJpuPbY5aP6FgD3rwtKTZSZuabtZkl7L_3q2VOpcZhocZeBG6oOSGEqZuK9b0hDLGFkdoRAuhMqVkfnyYBT9F45TWZChGec7kCNl5BOOSCzU2oW5j8DhYvAkeTOd1xFtwy1WLo25dSNjV2Hbe9zu77pa6hQovfDBfw6IJvt9ATLhLrl5i68MWp75uV5BcOkcnVvsE479-hj6eHt-nL9ns7fl1ejfLTM5Jm1VAZSG4AjCSEGONMUxpW-RyIrigE2YrWhQL4Dm1VGgNQI2YMFMoyq3WlJ2hq_3dJobvDlJbrkMX6-FlmSspmaBE8kFd75WJIaUItmyi2-jYl5SUuyjLBzb__I3yfsCXexyTObj_qNkPSLRyXw</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Lee, Seungjun</creator><creator>Kim, Gyung-Tak</creator><creator>Kim, Jueun</creator><creator>Kang, Taehoon</creator><creator>Earmme, Taeshik</creator><creator>Hwang, Ye-Jin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4632-7087</orcidid><orcidid>https://orcid.org/0000-0002-4215-5786</orcidid></search><sort><creationdate>20240319</creationdate><title>Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis</title><author>Lee, Seungjun ; Kim, Gyung-Tak ; Kim, Jueun ; Kang, Taehoon ; Earmme, Taeshik ; Hwang, Ye-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-de167549eec600cfccc39af7268545183fd177be421f15aaee1c583c7914faa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Block copolymers</topic><topic>Chemical synthesis</topic><topic>Copolymerization</topic><topic>Donor materials</topic><topic>Electrochemical analysis</topic><topic>Industrial applications</topic><topic>Material properties</topic><topic>Molecular weight</topic><topic>Optical properties</topic><topic>Organic semiconductors</topic><topic>Parameter modification</topic><topic>Photovoltaic cells</topic><topic>Ratios</topic><topic>Reproducibility</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seungjun</creatorcontrib><creatorcontrib>Kim, Gyung-Tak</creatorcontrib><creatorcontrib>Kim, Jueun</creatorcontrib><creatorcontrib>Kang, Taehoon</creatorcontrib><creatorcontrib>Earmme, Taeshik</creatorcontrib><creatorcontrib>Hwang, Ye-Jin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seungjun</au><au>Kim, Gyung-Tak</au><au>Kim, Jueun</au><au>Kang, Taehoon</au><au>Earmme, Taeshik</au><au>Hwang, Ye-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis</atitle><jtitle>Polymer chemistry</jtitle><date>2024-03-19</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>1166</spage><epage>1172</epage><pages>1166-1172</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>Controlling the block ratios, and thus the material properties, of fully conjugated block copolymers (BCPs), remains one of the challenges to implementing BCPs in the field of organic electronic and photonic devices. Here, the synthesis of a fully conjugated BCP, P3HT- b -PTB7, was demonstrated in a customized flow reactor for the first time. The PTB7 block was synthesized by Stille polycondensation using a P3HT-Br macroinitiator and the reaction parameters (reaction time and the amount of injected P3HT-Br) were modified to precisely control the block ratio. Specifically, the P3HT : PTB7 block ratios ranged from 50 : 50 to 23 : 77 (w : w). We also confirmed the high reproducibility of the block copolymerization by obtaining a standard deviation of 2.94% in the number-averaged molecular weight through three repeated runs of the BCP synthesis. These BCPs exhibited distinctive optical and electrochemical properties. Furthermore, we conducted investigations into their photovoltaic properties, revealing a significantly enhanced short-circuit current ( J sc ) in organic solar cells when using BCP as the donor material in the active layer, compared to devices employing homopolymers or a physical blend of homopolymers as the donor. These results highlight the promising potential of using flow syntheses to precisely control block ratios of conjugated BCPs in a reproducible manner, thereby advancing high-performing organic semiconductors towards industrial applications. Successful synthesis of fully conjugated block copolymers (BCPs) with controlled block ratios has been achieved in a reproducible manner using a flow reactor.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3py01333b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4632-7087</orcidid><orcidid>https://orcid.org/0000-0002-4215-5786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9954
ispartof Polymer chemistry, 2024-03, Vol.15 (12), p.1166-1172
issn 1759-9954
1759-9962
language eng
recordid cdi_proquest_journals_2966351064
source Royal Society Of Chemistry Journals 2008-
subjects Block copolymers
Chemical synthesis
Copolymerization
Donor materials
Electrochemical analysis
Industrial applications
Material properties
Molecular weight
Optical properties
Organic semiconductors
Parameter modification
Photovoltaic cells
Ratios
Reproducibility
Short circuit currents
Solar cells
title Precision control of molecular weight ratios in fully conjugated block copolymers using flow synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20control%20of%20molecular%20weight%20ratios%20in%20fully%20conjugated%20block%20copolymers%20using%20flow%20synthesis&rft.jtitle=Polymer%20chemistry&rft.au=Lee,%20Seungjun&rft.date=2024-03-19&rft.volume=15&rft.issue=12&rft.spage=1166&rft.epage=1172&rft.pages=1166-1172&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/d3py01333b&rft_dat=%3Cproquest_rsc_p%3E2966351064%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2966351064&rft_id=info:pmid/&rfr_iscdi=true