On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping

In this paper, we would like to consider the Cauchy problem for semilinear σ$$ \sigma $$‐evolution equations with time‐dependent damping for any σ≥1$$ \sigma \ge 1 $$. Motivated strongly by the classification of damping terms in some previous papers, the first main goal of the present work is to mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.5098-5135
Hauptverfasser: Sevki Aslan, Halit, Anh Dao, Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5135
container_issue 6
container_start_page 5098
container_title Mathematical methods in the applied sciences
container_volume 47
creator Sevki Aslan, Halit
Anh Dao, Tuan
description In this paper, we would like to consider the Cauchy problem for semilinear σ$$ \sigma $$‐evolution equations with time‐dependent damping for any σ≥1$$ \sigma \ge 1 $$. Motivated strongly by the classification of damping terms in some previous papers, the first main goal of the present work is to make some generalizations from σ=1$$ \sigma =1 $$ to σ>1$$ \sigma >1 $$ and simultaneously to investigate decay estimates for solutions to the corresponding linear equations in the so‐called effective damping cases. For the next main goals, we are going not only to prove the global well‐posedness property of small data solutions but also to indicate blow‐up results for solutions to the semilinear problem. In this concern, the novelty which should be recognized is that the application of a modified test function combined with a judicious choice of test functions gives blow‐up phenomena and upper bound estimates for lifespan in both the subcritical case and the critical case, where σ$$ \sigma $$ is assumed to be any fractional number. Finally, lower bound estimates for lifespan in some spatial dimensions are also established to find out their sharp results.
doi_str_mv 10.1002/mma.9857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2964568392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2964568392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-8ee23b1ef5523d810a22ab48799dba4bb9f7522ccb1f6268052556a6e7fc8e73</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFNuJY3usKr6kVl26MVhOcqGu4iS1E6puSLwAb8Y78CSklJXpTrqf7k5_hK4pmVBC2J1zZqIkFydoRIlSEU1EeopGhAoSJYwm5-gihA0hRFLKRuhlWeNuDXhm-ny9x61vsgocLhuPAzhb2RqMx18f3--f8NZUfWebGsO2N4cm4J3t1rizDoZ5AS3UBdQdLoxrbf16ic5KUwW4-qtjtHq4X82eovny8Xk2nUc544mIJACLMwol5ywuJCWGMZMlUihVZCbJMlUKzlieZ7RMWSoJZ5ynJgVR5hJEPEY3x7XD89seQqc3Te_r4aJmKk14KmPFBnV7VLlvQvBQ6tZbZ_xeU6IPyekhOX1IbqDRke5sBft_nV4spr_-B-0-cnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2964568392</pqid></control><display><type>article</type><title>On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping</title><source>Access via Wiley Online Library</source><creator>Sevki Aslan, Halit ; Anh Dao, Tuan</creator><creatorcontrib>Sevki Aslan, Halit ; Anh Dao, Tuan</creatorcontrib><description>In this paper, we would like to consider the Cauchy problem for semilinear σ$$ \sigma $$‐evolution equations with time‐dependent damping for any σ≥1$$ \sigma \ge 1 $$. Motivated strongly by the classification of damping terms in some previous papers, the first main goal of the present work is to make some generalizations from σ=1$$ \sigma &amp;amp;#x0003D;1 $$ to σ&gt;1$$ \sigma &amp;gt;1 $$ and simultaneously to investigate decay estimates for solutions to the corresponding linear equations in the so‐called effective damping cases. For the next main goals, we are going not only to prove the global well‐posedness property of small data solutions but also to indicate blow‐up results for solutions to the semilinear problem. In this concern, the novelty which should be recognized is that the application of a modified test function combined with a judicious choice of test functions gives blow‐up phenomena and upper bound estimates for lifespan in both the subcritical case and the critical case, where σ$$ \sigma $$ is assumed to be any fractional number. Finally, lower bound estimates for lifespan in some spatial dimensions are also established to find out their sharp results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9857</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Cauchy problems ; critical exponent ; Damping ; Estimates ; Evolution ; global existence of small data solution ; Life span ; lifespan estimates ; Linear equations ; Lower bounds ; Mathematical analysis ; Time dependence ; Upper bounds ; WKB‐analysis ; σ$$ \sigma $$‐evolution equation</subject><ispartof>Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.5098-5135</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-8ee23b1ef5523d810a22ab48799dba4bb9f7522ccb1f6268052556a6e7fc8e73</cites><orcidid>0000-0003-4578-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9857$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9857$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Sevki Aslan, Halit</creatorcontrib><creatorcontrib>Anh Dao, Tuan</creatorcontrib><title>On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we would like to consider the Cauchy problem for semilinear σ$$ \sigma $$‐evolution equations with time‐dependent damping for any σ≥1$$ \sigma \ge 1 $$. Motivated strongly by the classification of damping terms in some previous papers, the first main goal of the present work is to make some generalizations from σ=1$$ \sigma &amp;amp;#x0003D;1 $$ to σ&gt;1$$ \sigma &amp;gt;1 $$ and simultaneously to investigate decay estimates for solutions to the corresponding linear equations in the so‐called effective damping cases. For the next main goals, we are going not only to prove the global well‐posedness property of small data solutions but also to indicate blow‐up results for solutions to the semilinear problem. In this concern, the novelty which should be recognized is that the application of a modified test function combined with a judicious choice of test functions gives blow‐up phenomena and upper bound estimates for lifespan in both the subcritical case and the critical case, where σ$$ \sigma $$ is assumed to be any fractional number. Finally, lower bound estimates for lifespan in some spatial dimensions are also established to find out their sharp results.</description><subject>Cauchy problems</subject><subject>critical exponent</subject><subject>Damping</subject><subject>Estimates</subject><subject>Evolution</subject><subject>global existence of small data solution</subject><subject>Life span</subject><subject>lifespan estimates</subject><subject>Linear equations</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Time dependence</subject><subject>Upper bounds</subject><subject>WKB‐analysis</subject><subject>σ$$ \sigma $$‐evolution equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCJRaWFNuJY3usKr6kVl26MVhOcqGu4iS1E6puSLwAb8Y78CSklJXpTrqf7k5_hK4pmVBC2J1zZqIkFydoRIlSEU1EeopGhAoSJYwm5-gihA0hRFLKRuhlWeNuDXhm-ny9x61vsgocLhuPAzhb2RqMx18f3--f8NZUfWebGsO2N4cm4J3t1rizDoZ5AS3UBdQdLoxrbf16ic5KUwW4-qtjtHq4X82eovny8Xk2nUc544mIJACLMwol5ywuJCWGMZMlUihVZCbJMlUKzlieZ7RMWSoJZ5ynJgVR5hJEPEY3x7XD89seQqc3Te_r4aJmKk14KmPFBnV7VLlvQvBQ6tZbZ_xeU6IPyekhOX1IbqDRke5sBft_nV4spr_-B-0-cnQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Sevki Aslan, Halit</creator><creator>Anh Dao, Tuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4578-4235</orcidid></search><sort><creationdate>202404</creationdate><title>On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping</title><author>Sevki Aslan, Halit ; Anh Dao, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-8ee23b1ef5523d810a22ab48799dba4bb9f7522ccb1f6268052556a6e7fc8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>critical exponent</topic><topic>Damping</topic><topic>Estimates</topic><topic>Evolution</topic><topic>global existence of small data solution</topic><topic>Life span</topic><topic>lifespan estimates</topic><topic>Linear equations</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Time dependence</topic><topic>Upper bounds</topic><topic>WKB‐analysis</topic><topic>σ$$ \sigma $$‐evolution equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevki Aslan, Halit</creatorcontrib><creatorcontrib>Anh Dao, Tuan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevki Aslan, Halit</au><au>Anh Dao, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>5098</spage><epage>5135</epage><pages>5098-5135</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we would like to consider the Cauchy problem for semilinear σ$$ \sigma $$‐evolution equations with time‐dependent damping for any σ≥1$$ \sigma \ge 1 $$. Motivated strongly by the classification of damping terms in some previous papers, the first main goal of the present work is to make some generalizations from σ=1$$ \sigma &amp;amp;#x0003D;1 $$ to σ&gt;1$$ \sigma &amp;gt;1 $$ and simultaneously to investigate decay estimates for solutions to the corresponding linear equations in the so‐called effective damping cases. For the next main goals, we are going not only to prove the global well‐posedness property of small data solutions but also to indicate blow‐up results for solutions to the semilinear problem. In this concern, the novelty which should be recognized is that the application of a modified test function combined with a judicious choice of test functions gives blow‐up phenomena and upper bound estimates for lifespan in both the subcritical case and the critical case, where σ$$ \sigma $$ is assumed to be any fractional number. Finally, lower bound estimates for lifespan in some spatial dimensions are also established to find out their sharp results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9857</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-4578-4235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.5098-5135
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2964568392
source Access via Wiley Online Library
subjects Cauchy problems
critical exponent
Damping
Estimates
Evolution
global existence of small data solution
Life span
lifespan estimates
Linear equations
Lower bounds
Mathematical analysis
Time dependence
Upper bounds
WKB‐analysis
σ$$ \sigma $$‐evolution equation
title On the Cauchy problem for semilinear σ‐evolution equations with time‐dependent damping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Cauchy%20problem%20for%20semilinear%20%CF%83%E2%80%90evolution%20equations%20with%20time%E2%80%90dependent%20damping&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Sevki%20Aslan,%20Halit&rft.date=2024-04&rft.volume=47&rft.issue=6&rft.spage=5098&rft.epage=5135&rft.pages=5098-5135&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9857&rft_dat=%3Cproquest_cross%3E2964568392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2964568392&rft_id=info:pmid/&rfr_iscdi=true