Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships

This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.4697-4733
Hauptverfasser: Hong, Yilin, Ding, Chuan, Liu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4733
container_issue 6
container_start_page 4697
container_title Mathematical methods in the applied sciences
container_volume 47
creator Hong, Yilin
Ding, Chuan
Liu, Peng
description This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.
doi_str_mv 10.1002/mma.9834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2964357336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2964357336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</originalsourceid><addsrcrecordid>eNp1kMlOwzAQQC0EEqUg8QmWuHAgxVs2blXFJrXiAD1bjjNp3aZOsF1VvfEP_CFfQtJyZS6j0TzN8hC6pmRECWH3m40a5RkXJ2hASZ5HVKTJKRoQmpJIMCrO0YX3K0JIRikboPV7o42qsYWwa9wa16CcNXbxgOdWgwvK2LC_w0sI4JoFWDB9qWyJwxKwatvaaBVMY7GxuHXGatOq-ufrW3VwwA7qQ9cvTesv0Vmlag9Xf3mI5k-PH5OXaPr2_DoZTyPNYiGiEvKEMJ1WBS9iyLqoaCwKKLUCQlJeZhlLmWCJElrxOCElrZgoGMRx2j2V8CG6Oc5tXfO5BR_kqtk6262ULE8Ej1POe-r2SGnXeO-gkt35G-X2khLZq5SdStmr7NDoiO5MDft_OTmbjQ_8L1xadwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2964357336</pqid></control><display><type>article</type><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hong, Yilin ; Ding, Chuan ; Liu, Peng</creator><creatorcontrib>Hong, Yilin ; Ding, Chuan ; Liu, Peng</creatorcontrib><description>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9834</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; consensus reaching ; Convergence ; Heterogeneity ; Network topologies ; network topology ; principal–agent ; social network ; Social networks ; Uncertainty</subject><ispartof>Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.4697-4733</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</cites><orcidid>0000-0003-2231-1312 ; 0000-0001-5214-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hong, Yilin</creatorcontrib><creatorcontrib>Ding, Chuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><title>Mathematical methods in the applied sciences</title><description>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</description><subject>Algorithms</subject><subject>consensus reaching</subject><subject>Convergence</subject><subject>Heterogeneity</subject><subject>Network topologies</subject><subject>network topology</subject><subject>principal–agent</subject><subject>social network</subject><subject>Social networks</subject><subject>Uncertainty</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQQC0EEqUg8QmWuHAgxVs2blXFJrXiAD1bjjNp3aZOsF1VvfEP_CFfQtJyZS6j0TzN8hC6pmRECWH3m40a5RkXJ2hASZ5HVKTJKRoQmpJIMCrO0YX3K0JIRikboPV7o42qsYWwa9wa16CcNXbxgOdWgwvK2LC_w0sI4JoFWDB9qWyJwxKwatvaaBVMY7GxuHXGatOq-ufrW3VwwA7qQ9cvTesv0Vmlag9Xf3mI5k-PH5OXaPr2_DoZTyPNYiGiEvKEMJ1WBS9iyLqoaCwKKLUCQlJeZhlLmWCJElrxOCElrZgoGMRx2j2V8CG6Oc5tXfO5BR_kqtk6262ULE8Ej1POe-r2SGnXeO-gkt35G-X2khLZq5SdStmr7NDoiO5MDft_OTmbjQ_8L1xadwc</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Hong, Yilin</creator><creator>Ding, Chuan</creator><creator>Liu, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2231-1312</orcidid><orcidid>https://orcid.org/0000-0001-5214-4231</orcidid></search><sort><creationdate>202404</creationdate><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><author>Hong, Yilin ; Ding, Chuan ; Liu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>consensus reaching</topic><topic>Convergence</topic><topic>Heterogeneity</topic><topic>Network topologies</topic><topic>network topology</topic><topic>principal–agent</topic><topic>social network</topic><topic>Social networks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yilin</creatorcontrib><creatorcontrib>Ding, Chuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yilin</au><au>Ding, Chuan</au><au>Liu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>4697</spage><epage>4733</epage><pages>4697-4733</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9834</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-2231-1312</orcidid><orcidid>https://orcid.org/0000-0001-5214-4231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.4697-4733
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2964357336
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
consensus reaching
Convergence
Heterogeneity
Network topologies
network topology
principal–agent
social network
Social networks
Uncertainty
title Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20network%20learning:%20Uncertainty,%20heterogeneity,%20and%20the%20application%20in%20principal%E2%80%93agent%20relationships&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hong,%20Yilin&rft.date=2024-04&rft.volume=47&rft.issue=6&rft.spage=4697&rft.epage=4733&rft.pages=4697-4733&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9834&rft_dat=%3Cproquest_cross%3E2964357336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2964357336&rft_id=info:pmid/&rfr_iscdi=true