Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships
This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.4697-4733 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4733 |
---|---|
container_issue | 6 |
container_start_page | 4697 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Hong, Yilin Ding, Chuan Liu, Peng |
description | This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL. |
doi_str_mv | 10.1002/mma.9834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2964357336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2964357336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</originalsourceid><addsrcrecordid>eNp1kMlOwzAQQC0EEqUg8QmWuHAgxVs2blXFJrXiAD1bjjNp3aZOsF1VvfEP_CFfQtJyZS6j0TzN8hC6pmRECWH3m40a5RkXJ2hASZ5HVKTJKRoQmpJIMCrO0YX3K0JIRikboPV7o42qsYWwa9wa16CcNXbxgOdWgwvK2LC_w0sI4JoFWDB9qWyJwxKwatvaaBVMY7GxuHXGatOq-ufrW3VwwA7qQ9cvTesv0Vmlag9Xf3mI5k-PH5OXaPr2_DoZTyPNYiGiEvKEMJ1WBS9iyLqoaCwKKLUCQlJeZhlLmWCJElrxOCElrZgoGMRx2j2V8CG6Oc5tXfO5BR_kqtk6262ULE8Ej1POe-r2SGnXeO-gkt35G-X2khLZq5SdStmr7NDoiO5MDft_OTmbjQ_8L1xadwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2964357336</pqid></control><display><type>article</type><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hong, Yilin ; Ding, Chuan ; Liu, Peng</creator><creatorcontrib>Hong, Yilin ; Ding, Chuan ; Liu, Peng</creatorcontrib><description>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9834</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; consensus reaching ; Convergence ; Heterogeneity ; Network topologies ; network topology ; principal–agent ; social network ; Social networks ; Uncertainty</subject><ispartof>Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.4697-4733</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</cites><orcidid>0000-0003-2231-1312 ; 0000-0001-5214-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hong, Yilin</creatorcontrib><creatorcontrib>Ding, Chuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><title>Mathematical methods in the applied sciences</title><description>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</description><subject>Algorithms</subject><subject>consensus reaching</subject><subject>Convergence</subject><subject>Heterogeneity</subject><subject>Network topologies</subject><subject>network topology</subject><subject>principal–agent</subject><subject>social network</subject><subject>Social networks</subject><subject>Uncertainty</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQQC0EEqUg8QmWuHAgxVs2blXFJrXiAD1bjjNp3aZOsF1VvfEP_CFfQtJyZS6j0TzN8hC6pmRECWH3m40a5RkXJ2hASZ5HVKTJKRoQmpJIMCrO0YX3K0JIRikboPV7o42qsYWwa9wa16CcNXbxgOdWgwvK2LC_w0sI4JoFWDB9qWyJwxKwatvaaBVMY7GxuHXGatOq-ufrW3VwwA7qQ9cvTesv0Vmlag9Xf3mI5k-PH5OXaPr2_DoZTyPNYiGiEvKEMJ1WBS9iyLqoaCwKKLUCQlJeZhlLmWCJElrxOCElrZgoGMRx2j2V8CG6Oc5tXfO5BR_kqtk6262ULE8Ej1POe-r2SGnXeO-gkt35G-X2khLZq5SdStmr7NDoiO5MDft_OTmbjQ_8L1xadwc</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Hong, Yilin</creator><creator>Ding, Chuan</creator><creator>Liu, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2231-1312</orcidid><orcidid>https://orcid.org/0000-0001-5214-4231</orcidid></search><sort><creationdate>202404</creationdate><title>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</title><author>Hong, Yilin ; Ding, Chuan ; Liu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2544-de9602c7fb3b5e8888f154bedcae0073d88272426a4ca3560d1f24b2e55781163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>consensus reaching</topic><topic>Convergence</topic><topic>Heterogeneity</topic><topic>Network topologies</topic><topic>network topology</topic><topic>principal–agent</topic><topic>social network</topic><topic>Social networks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yilin</creatorcontrib><creatorcontrib>Ding, Chuan</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yilin</au><au>Ding, Chuan</au><au>Liu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>4697</spage><epage>4733</epage><pages>4697-4733</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9834</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-2231-1312</orcidid><orcidid>https://orcid.org/0000-0001-5214-4231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.4697-4733 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2964357336 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms consensus reaching Convergence Heterogeneity Network topologies network topology principal–agent social network Social networks Uncertainty |
title | Social network learning: Uncertainty, heterogeneity, and the application in principal–agent relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20network%20learning:%20Uncertainty,%20heterogeneity,%20and%20the%20application%20in%20principal%E2%80%93agent%20relationships&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hong,%20Yilin&rft.date=2024-04&rft.volume=47&rft.issue=6&rft.spage=4697&rft.epage=4733&rft.pages=4697-4733&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9834&rft_dat=%3Cproquest_cross%3E2964357336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2964357336&rft_id=info:pmid/&rfr_iscdi=true |