Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential
Background and aimes Plant roots secrete acid phosphatases (ACPs) to mineralize rhizosphere organic phosphorus (Po) for absorption. However, the ecological effects of such exudates on the rhizobacterial community and function remain unclear. Methods Purple acid phosphatase 10c (OsPAP10c) is the majo...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2024-03, Vol.496 (1-2), p.431-448 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 1-2 |
container_start_page | 431 |
container_title | Plant and soil |
container_volume | 496 |
creator | Xing, Hongmei Luo, Xuesong Chen, Xinghua Deng, Suren Cai, Hongmei Xu, Fangsen Shi, Lei Ding, Guangda Zhu, Qiang Wang, Chuang |
description | Background and aimes
Plant roots secrete acid phosphatases (ACPs) to mineralize rhizosphere organic phosphorus (Po) for absorption. However, the ecological effects of such exudates on the rhizobacterial community and function remain unclear.
Methods
Purple acid phosphatase 10c (OsPAP10c) is the major root-secreted ACP under both Pi-sufficient and Pi-deficient conditions in rice. To study the effect of root-secreted ACP on rhizosphere phosphorus (P) cycling and succession of the bacterial community, the previously reported
OsPAP10c
mutant and overexpression lines were planted in paddy soils with or without P fertilizer (+ P or -P).
Results
The results showed that the expression of
OsPAP10c
significantly influenced ACP activity in rhizosphere soil, which changed the bacterial composition by 6.72% to 9.54%. The expression of
OsPAP10c
helped to recruit P-solubilizing bacteria (PSB) at the filling stage under -P conditions. However, OsPAP10c increased bacterial P competition potentials and rhizosphere alkaline phosphatase (ALP) at the elongation and filling stages under + P conditions. Interestingly, overexpression of
OsPAP10c
relaxed bacterial P demand pressure and increased the relative abundance of bacteria with nitrogen, sulphur, and iron potential functions, which benefited rice nutrient uptake and growth at the early stages.
Conclusion
In conclusion, this study indicated that P fertilizer and root-secreted ACPs cooperatively regulate rhizosphere P cycling potential by modifying the rhizobacterial composition. |
doi_str_mv | 10.1007/s11104-023-06374-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2963009616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2963009616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3ab13054258171ada7393516cddb51f086beeb512e5ec04eed3073c893c03b483</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA6-pN0ybtUgb_YEAXCu5CmqbTjG1Tk3Qx8_Rm7IA7Nzc3cL7vwkHomsAtAeB3nhACWQIpTYBRniX7E7QgOadJDpSdogUATRPg5ec5uvB-C4c_YQv09Ta5sdNYKlPjsbV-bGWQXmMCCve2No3RHodWY2dUHK3Z20qqoJ2RHVa276fBhB2WQ41N8McK6yaP1U51Ztjg0QY9hIhforNGdl5fHd8l-nh8eF89J-vXp5fV_TpRKYeQUFkRCnmW5gXhRNaS05LmhKm6rnLSQMEqreOW6lwryLSuKXCqipIqoFVW0CW6mXtHZ78n7YPY2skN8aRIS0YBSkZYpNKZUs5673QjRmd66XaCgDhIFbNUEaWKX6liH0N0DvkIDxvt_qr_Sf0AvbZ8GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2963009616</pqid></control><display><type>article</type><title>Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xing, Hongmei ; Luo, Xuesong ; Chen, Xinghua ; Deng, Suren ; Cai, Hongmei ; Xu, Fangsen ; Shi, Lei ; Ding, Guangda ; Zhu, Qiang ; Wang, Chuang</creator><creatorcontrib>Xing, Hongmei ; Luo, Xuesong ; Chen, Xinghua ; Deng, Suren ; Cai, Hongmei ; Xu, Fangsen ; Shi, Lei ; Ding, Guangda ; Zhu, Qiang ; Wang, Chuang</creatorcontrib><description>Background and aimes
Plant roots secrete acid phosphatases (ACPs) to mineralize rhizosphere organic phosphorus (Po) for absorption. However, the ecological effects of such exudates on the rhizobacterial community and function remain unclear.
Methods
Purple acid phosphatase 10c (OsPAP10c) is the major root-secreted ACP under both Pi-sufficient and Pi-deficient conditions in rice. To study the effect of root-secreted ACP on rhizosphere phosphorus (P) cycling and succession of the bacterial community, the previously reported
OsPAP10c
mutant and overexpression lines were planted in paddy soils with or without P fertilizer (+ P or -P).
Results
The results showed that the expression of
OsPAP10c
significantly influenced ACP activity in rhizosphere soil, which changed the bacterial composition by 6.72% to 9.54%. The expression of
OsPAP10c
helped to recruit P-solubilizing bacteria (PSB) at the filling stage under -P conditions. However, OsPAP10c increased bacterial P competition potentials and rhizosphere alkaline phosphatase (ALP) at the elongation and filling stages under + P conditions. Interestingly, overexpression of
OsPAP10c
relaxed bacterial P demand pressure and increased the relative abundance of bacteria with nitrogen, sulphur, and iron potential functions, which benefited rice nutrient uptake and growth at the early stages.
Conclusion
In conclusion, this study indicated that P fertilizer and root-secreted ACPs cooperatively regulate rhizosphere P cycling potential by modifying the rhizobacterial composition.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-023-06374-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acid phosphatase ; Agriculture ; Alkaline phosphatase ; Bacteria ; Biomedical and Life Sciences ; Composition ; Cycles ; Ecological effects ; Ecology ; Exudates ; Exudation ; Fertilizers ; Life Sciences ; Nutrient uptake ; Organic phosphorus ; Phosphatase ; Phosphorus ; Plant Physiology ; Plant roots ; Plant Sciences ; Purple acid phosphatase ; Relative abundance ; Research Article ; Rhizosphere ; Rice ; Rice fields ; Soil microorganisms ; Soil Science & Conservation</subject><ispartof>Plant and soil, 2024-03, Vol.496 (1-2), p.431-448</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3ab13054258171ada7393516cddb51f086beeb512e5ec04eed3073c893c03b483</cites><orcidid>0000-0002-7663-7433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-023-06374-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-023-06374-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Xing, Hongmei</creatorcontrib><creatorcontrib>Luo, Xuesong</creatorcontrib><creatorcontrib>Chen, Xinghua</creatorcontrib><creatorcontrib>Deng, Suren</creatorcontrib><creatorcontrib>Cai, Hongmei</creatorcontrib><creatorcontrib>Xu, Fangsen</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Ding, Guangda</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Wang, Chuang</creatorcontrib><title>Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aimes
Plant roots secrete acid phosphatases (ACPs) to mineralize rhizosphere organic phosphorus (Po) for absorption. However, the ecological effects of such exudates on the rhizobacterial community and function remain unclear.
Methods
Purple acid phosphatase 10c (OsPAP10c) is the major root-secreted ACP under both Pi-sufficient and Pi-deficient conditions in rice. To study the effect of root-secreted ACP on rhizosphere phosphorus (P) cycling and succession of the bacterial community, the previously reported
OsPAP10c
mutant and overexpression lines were planted in paddy soils with or without P fertilizer (+ P or -P).
Results
The results showed that the expression of
OsPAP10c
significantly influenced ACP activity in rhizosphere soil, which changed the bacterial composition by 6.72% to 9.54%. The expression of
OsPAP10c
helped to recruit P-solubilizing bacteria (PSB) at the filling stage under -P conditions. However, OsPAP10c increased bacterial P competition potentials and rhizosphere alkaline phosphatase (ALP) at the elongation and filling stages under + P conditions. Interestingly, overexpression of
OsPAP10c
relaxed bacterial P demand pressure and increased the relative abundance of bacteria with nitrogen, sulphur, and iron potential functions, which benefited rice nutrient uptake and growth at the early stages.
Conclusion
In conclusion, this study indicated that P fertilizer and root-secreted ACPs cooperatively regulate rhizosphere P cycling potential by modifying the rhizobacterial composition.</description><subject>Acid phosphatase</subject><subject>Agriculture</subject><subject>Alkaline phosphatase</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Composition</subject><subject>Cycles</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Fertilizers</subject><subject>Life Sciences</subject><subject>Nutrient uptake</subject><subject>Organic phosphorus</subject><subject>Phosphatase</subject><subject>Phosphorus</subject><subject>Plant Physiology</subject><subject>Plant roots</subject><subject>Plant Sciences</subject><subject>Purple acid phosphatase</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Rhizosphere</subject><subject>Rice</subject><subject>Rice fields</subject><subject>Soil microorganisms</subject><subject>Soil Science & Conservation</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuA6-pN0ybtUgb_YEAXCu5CmqbTjG1Tk3Qx8_Rm7IA7Nzc3cL7vwkHomsAtAeB3nhACWQIpTYBRniX7E7QgOadJDpSdogUATRPg5ec5uvB-C4c_YQv09Ta5sdNYKlPjsbV-bGWQXmMCCve2No3RHodWY2dUHK3Z20qqoJ2RHVa276fBhB2WQ41N8McK6yaP1U51Ztjg0QY9hIhforNGdl5fHd8l-nh8eF89J-vXp5fV_TpRKYeQUFkRCnmW5gXhRNaS05LmhKm6rnLSQMEqreOW6lwryLSuKXCqipIqoFVW0CW6mXtHZ78n7YPY2skN8aRIS0YBSkZYpNKZUs5673QjRmd66XaCgDhIFbNUEaWKX6liH0N0DvkIDxvt_qr_Sf0AvbZ8GQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Xing, Hongmei</creator><creator>Luo, Xuesong</creator><creator>Chen, Xinghua</creator><creator>Deng, Suren</creator><creator>Cai, Hongmei</creator><creator>Xu, Fangsen</creator><creator>Shi, Lei</creator><creator>Ding, Guangda</creator><creator>Zhu, Qiang</creator><creator>Wang, Chuang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7663-7433</orcidid></search><sort><creationdate>20240301</creationdate><title>Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential</title><author>Xing, Hongmei ; Luo, Xuesong ; Chen, Xinghua ; Deng, Suren ; Cai, Hongmei ; Xu, Fangsen ; Shi, Lei ; Ding, Guangda ; Zhu, Qiang ; Wang, Chuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3ab13054258171ada7393516cddb51f086beeb512e5ec04eed3073c893c03b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid phosphatase</topic><topic>Agriculture</topic><topic>Alkaline phosphatase</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Composition</topic><topic>Cycles</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Fertilizers</topic><topic>Life Sciences</topic><topic>Nutrient uptake</topic><topic>Organic phosphorus</topic><topic>Phosphatase</topic><topic>Phosphorus</topic><topic>Plant Physiology</topic><topic>Plant roots</topic><topic>Plant Sciences</topic><topic>Purple acid phosphatase</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Rhizosphere</topic><topic>Rice</topic><topic>Rice fields</topic><topic>Soil microorganisms</topic><topic>Soil Science & Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Hongmei</creatorcontrib><creatorcontrib>Luo, Xuesong</creatorcontrib><creatorcontrib>Chen, Xinghua</creatorcontrib><creatorcontrib>Deng, Suren</creatorcontrib><creatorcontrib>Cai, Hongmei</creatorcontrib><creatorcontrib>Xu, Fangsen</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Ding, Guangda</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Wang, Chuang</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Hongmei</au><au>Luo, Xuesong</au><au>Chen, Xinghua</au><au>Deng, Suren</au><au>Cai, Hongmei</au><au>Xu, Fangsen</au><au>Shi, Lei</au><au>Ding, Guangda</au><au>Zhu, Qiang</au><au>Wang, Chuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>496</volume><issue>1-2</issue><spage>431</spage><epage>448</epage><pages>431-448</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aimes
Plant roots secrete acid phosphatases (ACPs) to mineralize rhizosphere organic phosphorus (Po) for absorption. However, the ecological effects of such exudates on the rhizobacterial community and function remain unclear.
Methods
Purple acid phosphatase 10c (OsPAP10c) is the major root-secreted ACP under both Pi-sufficient and Pi-deficient conditions in rice. To study the effect of root-secreted ACP on rhizosphere phosphorus (P) cycling and succession of the bacterial community, the previously reported
OsPAP10c
mutant and overexpression lines were planted in paddy soils with or without P fertilizer (+ P or -P).
Results
The results showed that the expression of
OsPAP10c
significantly influenced ACP activity in rhizosphere soil, which changed the bacterial composition by 6.72% to 9.54%. The expression of
OsPAP10c
helped to recruit P-solubilizing bacteria (PSB) at the filling stage under -P conditions. However, OsPAP10c increased bacterial P competition potentials and rhizosphere alkaline phosphatase (ALP) at the elongation and filling stages under + P conditions. Interestingly, overexpression of
OsPAP10c
relaxed bacterial P demand pressure and increased the relative abundance of bacteria with nitrogen, sulphur, and iron potential functions, which benefited rice nutrient uptake and growth at the early stages.
Conclusion
In conclusion, this study indicated that P fertilizer and root-secreted ACPs cooperatively regulate rhizosphere P cycling potential by modifying the rhizobacterial composition.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-023-06374-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7663-7433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2024-03, Vol.496 (1-2), p.431-448 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_proquest_journals_2963009616 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acid phosphatase Agriculture Alkaline phosphatase Bacteria Biomedical and Life Sciences Composition Cycles Ecological effects Ecology Exudates Exudation Fertilizers Life Sciences Nutrient uptake Organic phosphorus Phosphatase Phosphorus Plant Physiology Plant roots Plant Sciences Purple acid phosphatase Relative abundance Research Article Rhizosphere Rice Rice fields Soil microorganisms Soil Science & Conservation |
title | Purple acid phosphatase 10c modifies the rice rhizobacterial community and its phosphorus cycling potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purple%20acid%20phosphatase%2010c%20modifies%20the%20rice%20rhizobacterial%20community%20and%20its%20phosphorus%20cycling%20potential&rft.jtitle=Plant%20and%20soil&rft.au=Xing,%20Hongmei&rft.date=2024-03-01&rft.volume=496&rft.issue=1-2&rft.spage=431&rft.epage=448&rft.pages=431-448&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-023-06374-z&rft_dat=%3Cproquest_cross%3E2963009616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2963009616&rft_id=info:pmid/&rfr_iscdi=true |