Predicting Generalization of AI Colonoscopy Models to Unseen Data
\(\textbf{Background}\): Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. \(\textbf{Methods}\): We use a "Masked Siamese Network&...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shor, Joel McNeil, Carson Intrator, Yotam Ledsam, Joseph R Yamano, Hiro-o Tsurumaru, Daisuke Kayama, Hiroki Hamabe, Atsushi Ando, Koji Ota, Mitsuhiko Ogino, Haruei Nakase, Hiroshi Kobayashi, Kaho Miyo, Masaaki Oki, Eiji Takemasa, Ichiro Rivlin, Ehud Goldenberg, Roman |
description | \(\textbf{Background}\): Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. \(\textbf{Methods}\): We use a "Masked Siamese Network" (MSN) to identify novel phenomena in unseen data and predict polyp detector performance. MSN is trained to predict masked out regions of polyp images, without any labels. We test MSN's ability to be trained on data only from Israel and detect unseen techniques, narrow-band imaging (NBI) and chromendoscoy (CE), on colonoscopes from Japan (354 videos, 128 hours). We also test MSN's ability to predict performance of Computer Aided Detection (CADe) of polyps on colonoscopies from both countries, even though MSN is not trained on data from Japan. \(\textbf{Results}\): MSN correctly identifies NBI and CE as less similar to Israel whitelight than Japan whitelight (bootstrapped z-test, |z| > 496, p < 10^-8 for both) using the label-free Frechet distance. MSN detects NBI with 99% accuracy, predicts CE better than our heuristic (90% vs 79% accuracy) despite being trained only on whitelight, and is the only method that is robust to noisy labels. MSN predicts CADe polyp detector performance on in-domain Israel and out-of-domain Japan colonoscopies (r=0.79, 0.37 respectively). With few examples of Japan detector performance to train on, MSN prediction of Japan performance improves (r=0.56). \(\textbf{Conclusion}\): Our technique can identify distribution shifts in clinical data and can predict CADe detector performance on unseen data, without labels. Our self-supervised approach can aid in detecting when data in practice is different from training, such as between hospitals or data has meaningfully shifted from training. MSN has potential for application to medical image domains beyond colonoscopy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2962943876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962943876</sourcerecordid><originalsourceid>FETCH-proquest_journals_29629438763</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLtSk17HU6yA41LmE9lRSQk5N0kGfXgcfwOkfvn_BAi7ELioSzlcsdG6M45hnOU9TEbDqZrFXnVfmASc0aKVWb-kVGaABqgvUpMmQ62h6wZV61A48wd04RAN76eWGLQepHYa_rtn2eGjqczRZes7ofDvSbM2XWl5mvExEkWfiv-sDViM5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962943876</pqid></control><display><type>article</type><title>Predicting Generalization of AI Colonoscopy Models to Unseen Data</title><source>Free E- Journals</source><creator>Shor, Joel ; McNeil, Carson ; Intrator, Yotam ; Ledsam, Joseph R ; Yamano, Hiro-o ; Tsurumaru, Daisuke ; Kayama, Hiroki ; Hamabe, Atsushi ; Ando, Koji ; Ota, Mitsuhiko ; Ogino, Haruei ; Nakase, Hiroshi ; Kobayashi, Kaho ; Miyo, Masaaki ; Oki, Eiji ; Takemasa, Ichiro ; Rivlin, Ehud ; Goldenberg, Roman</creator><creatorcontrib>Shor, Joel ; McNeil, Carson ; Intrator, Yotam ; Ledsam, Joseph R ; Yamano, Hiro-o ; Tsurumaru, Daisuke ; Kayama, Hiroki ; Hamabe, Atsushi ; Ando, Koji ; Ota, Mitsuhiko ; Ogino, Haruei ; Nakase, Hiroshi ; Kobayashi, Kaho ; Miyo, Masaaki ; Oki, Eiji ; Takemasa, Ichiro ; Rivlin, Ehud ; Goldenberg, Roman</creatorcontrib><description>\(\textbf{Background}\): Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. \(\textbf{Methods}\): We use a "Masked Siamese Network" (MSN) to identify novel phenomena in unseen data and predict polyp detector performance. MSN is trained to predict masked out regions of polyp images, without any labels. We test MSN's ability to be trained on data only from Israel and detect unseen techniques, narrow-band imaging (NBI) and chromendoscoy (CE), on colonoscopes from Japan (354 videos, 128 hours). We also test MSN's ability to predict performance of Computer Aided Detection (CADe) of polyps on colonoscopies from both countries, even though MSN is not trained on data from Japan. \(\textbf{Results}\): MSN correctly identifies NBI and CE as less similar to Israel whitelight than Japan whitelight (bootstrapped z-test, |z| > 496, p < 10^-8 for both) using the label-free Frechet distance. MSN detects NBI with 99% accuracy, predicts CE better than our heuristic (90% vs 79% accuracy) despite being trained only on whitelight, and is the only method that is robust to noisy labels. MSN predicts CADe polyp detector performance on in-domain Israel and out-of-domain Japan colonoscopies (r=0.79, 0.37 respectively). With few examples of Japan detector performance to train on, MSN prediction of Japan performance improves (r=0.56). \(\textbf{Conclusion}\): Our technique can identify distribution shifts in clinical data and can predict CADe detector performance on unseen data, without labels. Our self-supervised approach can aid in detecting when data in practice is different from training, such as between hospitals or data has meaningfully shifted from training. MSN has potential for application to medical image domains beyond colonoscopy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Colonoscopy ; Labels ; Medical imaging ; Performance evaluation ; Performance prediction ; Polyps ; Sensors ; Training</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shor, Joel</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Intrator, Yotam</creatorcontrib><creatorcontrib>Ledsam, Joseph R</creatorcontrib><creatorcontrib>Yamano, Hiro-o</creatorcontrib><creatorcontrib>Tsurumaru, Daisuke</creatorcontrib><creatorcontrib>Kayama, Hiroki</creatorcontrib><creatorcontrib>Hamabe, Atsushi</creatorcontrib><creatorcontrib>Ando, Koji</creatorcontrib><creatorcontrib>Ota, Mitsuhiko</creatorcontrib><creatorcontrib>Ogino, Haruei</creatorcontrib><creatorcontrib>Nakase, Hiroshi</creatorcontrib><creatorcontrib>Kobayashi, Kaho</creatorcontrib><creatorcontrib>Miyo, Masaaki</creatorcontrib><creatorcontrib>Oki, Eiji</creatorcontrib><creatorcontrib>Takemasa, Ichiro</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><title>Predicting Generalization of AI Colonoscopy Models to Unseen Data</title><title>arXiv.org</title><description>\(\textbf{Background}\): Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. \(\textbf{Methods}\): We use a "Masked Siamese Network" (MSN) to identify novel phenomena in unseen data and predict polyp detector performance. MSN is trained to predict masked out regions of polyp images, without any labels. We test MSN's ability to be trained on data only from Israel and detect unseen techniques, narrow-band imaging (NBI) and chromendoscoy (CE), on colonoscopes from Japan (354 videos, 128 hours). We also test MSN's ability to predict performance of Computer Aided Detection (CADe) of polyps on colonoscopies from both countries, even though MSN is not trained on data from Japan. \(\textbf{Results}\): MSN correctly identifies NBI and CE as less similar to Israel whitelight than Japan whitelight (bootstrapped z-test, |z| > 496, p < 10^-8 for both) using the label-free Frechet distance. MSN detects NBI with 99% accuracy, predicts CE better than our heuristic (90% vs 79% accuracy) despite being trained only on whitelight, and is the only method that is robust to noisy labels. MSN predicts CADe polyp detector performance on in-domain Israel and out-of-domain Japan colonoscopies (r=0.79, 0.37 respectively). With few examples of Japan detector performance to train on, MSN prediction of Japan performance improves (r=0.56). \(\textbf{Conclusion}\): Our technique can identify distribution shifts in clinical data and can predict CADe detector performance on unseen data, without labels. Our self-supervised approach can aid in detecting when data in practice is different from training, such as between hospitals or data has meaningfully shifted from training. MSN has potential for application to medical image domains beyond colonoscopy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Colonoscopy</subject><subject>Labels</subject><subject>Medical imaging</subject><subject>Performance evaluation</subject><subject>Performance prediction</subject><subject>Polyps</subject><subject>Sensors</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLtSk17HU6yA41LmE9lRSQk5N0kGfXgcfwOkfvn_BAi7ELioSzlcsdG6M45hnOU9TEbDqZrFXnVfmASc0aKVWb-kVGaABqgvUpMmQ62h6wZV61A48wd04RAN76eWGLQepHYa_rtn2eGjqczRZes7ofDvSbM2XWl5mvExEkWfiv-sDViM5IQ</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Shor, Joel</creator><creator>McNeil, Carson</creator><creator>Intrator, Yotam</creator><creator>Ledsam, Joseph R</creator><creator>Yamano, Hiro-o</creator><creator>Tsurumaru, Daisuke</creator><creator>Kayama, Hiroki</creator><creator>Hamabe, Atsushi</creator><creator>Ando, Koji</creator><creator>Ota, Mitsuhiko</creator><creator>Ogino, Haruei</creator><creator>Nakase, Hiroshi</creator><creator>Kobayashi, Kaho</creator><creator>Miyo, Masaaki</creator><creator>Oki, Eiji</creator><creator>Takemasa, Ichiro</creator><creator>Rivlin, Ehud</creator><creator>Goldenberg, Roman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240322</creationdate><title>Predicting Generalization of AI Colonoscopy Models to Unseen Data</title><author>Shor, Joel ; McNeil, Carson ; Intrator, Yotam ; Ledsam, Joseph R ; Yamano, Hiro-o ; Tsurumaru, Daisuke ; Kayama, Hiroki ; Hamabe, Atsushi ; Ando, Koji ; Ota, Mitsuhiko ; Ogino, Haruei ; Nakase, Hiroshi ; Kobayashi, Kaho ; Miyo, Masaaki ; Oki, Eiji ; Takemasa, Ichiro ; Rivlin, Ehud ; Goldenberg, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29629438763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Colonoscopy</topic><topic>Labels</topic><topic>Medical imaging</topic><topic>Performance evaluation</topic><topic>Performance prediction</topic><topic>Polyps</topic><topic>Sensors</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Shor, Joel</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Intrator, Yotam</creatorcontrib><creatorcontrib>Ledsam, Joseph R</creatorcontrib><creatorcontrib>Yamano, Hiro-o</creatorcontrib><creatorcontrib>Tsurumaru, Daisuke</creatorcontrib><creatorcontrib>Kayama, Hiroki</creatorcontrib><creatorcontrib>Hamabe, Atsushi</creatorcontrib><creatorcontrib>Ando, Koji</creatorcontrib><creatorcontrib>Ota, Mitsuhiko</creatorcontrib><creatorcontrib>Ogino, Haruei</creatorcontrib><creatorcontrib>Nakase, Hiroshi</creatorcontrib><creatorcontrib>Kobayashi, Kaho</creatorcontrib><creatorcontrib>Miyo, Masaaki</creatorcontrib><creatorcontrib>Oki, Eiji</creatorcontrib><creatorcontrib>Takemasa, Ichiro</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shor, Joel</au><au>McNeil, Carson</au><au>Intrator, Yotam</au><au>Ledsam, Joseph R</au><au>Yamano, Hiro-o</au><au>Tsurumaru, Daisuke</au><au>Kayama, Hiroki</au><au>Hamabe, Atsushi</au><au>Ando, Koji</au><au>Ota, Mitsuhiko</au><au>Ogino, Haruei</au><au>Nakase, Hiroshi</au><au>Kobayashi, Kaho</au><au>Miyo, Masaaki</au><au>Oki, Eiji</au><au>Takemasa, Ichiro</au><au>Rivlin, Ehud</au><au>Goldenberg, Roman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Predicting Generalization of AI Colonoscopy Models to Unseen Data</atitle><jtitle>arXiv.org</jtitle><date>2024-03-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>\(\textbf{Background}\): Generalizability of AI colonoscopy algorithms is important for wider adoption in clinical practice. However, current techniques for evaluating performance on unseen data require expensive and time-intensive labels. \(\textbf{Methods}\): We use a "Masked Siamese Network" (MSN) to identify novel phenomena in unseen data and predict polyp detector performance. MSN is trained to predict masked out regions of polyp images, without any labels. We test MSN's ability to be trained on data only from Israel and detect unseen techniques, narrow-band imaging (NBI) and chromendoscoy (CE), on colonoscopes from Japan (354 videos, 128 hours). We also test MSN's ability to predict performance of Computer Aided Detection (CADe) of polyps on colonoscopies from both countries, even though MSN is not trained on data from Japan. \(\textbf{Results}\): MSN correctly identifies NBI and CE as less similar to Israel whitelight than Japan whitelight (bootstrapped z-test, |z| > 496, p < 10^-8 for both) using the label-free Frechet distance. MSN detects NBI with 99% accuracy, predicts CE better than our heuristic (90% vs 79% accuracy) despite being trained only on whitelight, and is the only method that is robust to noisy labels. MSN predicts CADe polyp detector performance on in-domain Israel and out-of-domain Japan colonoscopies (r=0.79, 0.37 respectively). With few examples of Japan detector performance to train on, MSN prediction of Japan performance improves (r=0.56). \(\textbf{Conclusion}\): Our technique can identify distribution shifts in clinical data and can predict CADe detector performance on unseen data, without labels. Our self-supervised approach can aid in detecting when data in practice is different from training, such as between hospitals or data has meaningfully shifted from training. MSN has potential for application to medical image domains beyond colonoscopy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2962943876 |
source | Free E- Journals |
subjects | Algorithms Artificial neural networks Colonoscopy Labels Medical imaging Performance evaluation Performance prediction Polyps Sensors Training |
title | Predicting Generalization of AI Colonoscopy Models to Unseen Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Predicting%20Generalization%20of%20AI%20Colonoscopy%20Models%20to%20Unseen%20Data&rft.jtitle=arXiv.org&rft.au=Shor,%20Joel&rft.date=2024-03-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2962943876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962943876&rft_id=info:pmid/&rfr_iscdi=true |