ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers
Machine unlearning (MUL) is an arising field in machine learning that seeks to erase the learned information of specific training data points from a trained model. Despite the recent active research in MUL within computer vision, the majority of work has focused on ResNet-based models. Given that Vi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cho, Ikhyun Park, Changyeon Hockenmaier, Julia |
description | Machine unlearning (MUL) is an arising field in machine learning that seeks to erase the learned information of specific training data points from a trained model. Despite the recent active research in MUL within computer vision, the majority of work has focused on ResNet-based models. Given that Vision Transformers (ViT) have become the predominant model architecture, a detailed study of MUL specifically tailored to ViT is essential. In this paper, we present comprehensive experiments on ViTs using recent MUL algorithms and datasets. We anticipate that our experiments, ablation studies, and findings could provide valuable insights and inspire further research in this field. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2962927334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962927334</sourcerecordid><originalsourceid>FETCH-proquest_journals_29629273343</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgKNp3uOBcqElbf7YqioNdtO0mEuxVU2JSc9PBt1fBB3D64Jzz9diQCzEN5zHnAxYQNVEU8XTGk0QM2alSRZiX-yVksJKEWhmEo-_qF1gDB7yg8ZDLy_3LS6NROqPMDXL0d1sTZG2rFdbgLVSK1OdTOGnoat0DHY1Z_yo1YfDbEZtsN8V6F7bOPjskf25s58xHnfki5Qs-EyIW_1VvJctCnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962927334</pqid></control><display><type>article</type><title>ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers</title><source>Free E- Journals</source><creator>Cho, Ikhyun ; Park, Changyeon ; Hockenmaier, Julia</creator><creatorcontrib>Cho, Ikhyun ; Park, Changyeon ; Hockenmaier, Julia</creatorcontrib><description>Machine unlearning (MUL) is an arising field in machine learning that seeks to erase the learned information of specific training data points from a trained model. Despite the recent active research in MUL within computer vision, the majority of work has focused on ResNet-based models. Given that Vision Transformers (ViT) have become the predominant model architecture, a detailed study of MUL specifically tailored to ViT is essential. In this paper, we present comprehensive experiments on ViTs using recent MUL algorithms and datasets. We anticipate that our experiments, ablation studies, and findings could provide valuable insights and inspire further research in this field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Algorithms ; Computer vision ; Data points ; Machine learning</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cho, Ikhyun</creatorcontrib><creatorcontrib>Park, Changyeon</creatorcontrib><creatorcontrib>Hockenmaier, Julia</creatorcontrib><title>ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers</title><title>arXiv.org</title><description>Machine unlearning (MUL) is an arising field in machine learning that seeks to erase the learned information of specific training data points from a trained model. Despite the recent active research in MUL within computer vision, the majority of work has focused on ResNet-based models. Given that Vision Transformers (ViT) have become the predominant model architecture, a detailed study of MUL specifically tailored to ViT is essential. In this paper, we present comprehensive experiments on ViTs using recent MUL algorithms and datasets. We anticipate that our experiments, ablation studies, and findings could provide valuable insights and inspire further research in this field.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Computer vision</subject><subject>Data points</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgKNp3uOBcqElbf7YqioNdtO0mEuxVU2JSc9PBt1fBB3D64Jzz9diQCzEN5zHnAxYQNVEU8XTGk0QM2alSRZiX-yVksJKEWhmEo-_qF1gDB7yg8ZDLy_3LS6NROqPMDXL0d1sTZG2rFdbgLVSK1OdTOGnoat0DHY1Z_yo1YfDbEZtsN8V6F7bOPjskf25s58xHnfki5Qs-EyIW_1VvJctCnw</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Cho, Ikhyun</creator><creator>Park, Changyeon</creator><creator>Hockenmaier, Julia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers</title><author>Cho, Ikhyun ; Park, Changyeon ; Hockenmaier, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29629273343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Computer vision</topic><topic>Data points</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Ikhyun</creatorcontrib><creatorcontrib>Park, Changyeon</creatorcontrib><creatorcontrib>Hockenmaier, Julia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Ikhyun</au><au>Park, Changyeon</au><au>Hockenmaier, Julia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Machine unlearning (MUL) is an arising field in machine learning that seeks to erase the learned information of specific training data points from a trained model. Despite the recent active research in MUL within computer vision, the majority of work has focused on ResNet-based models. Given that Vision Transformers (ViT) have become the predominant model architecture, a detailed study of MUL specifically tailored to ViT is essential. In this paper, we present comprehensive experiments on ViTs using recent MUL algorithms and datasets. We anticipate that our experiments, ablation studies, and findings could provide valuable insights and inspire further research in this field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2962927334 |
source | Free E- Journals |
subjects | Ablation Algorithms Computer vision Data points Machine learning |
title | ViT-MUL: A Baseline Study on Recent Machine Unlearning Methods Applied to Vision Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ViT-MUL:%20A%20Baseline%20Study%20on%20Recent%20Machine%20Unlearning%20Methods%20Applied%20to%20Vision%20Transformers&rft.jtitle=arXiv.org&rft.au=Cho,%20Ikhyun&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2962927334%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962927334&rft_id=info:pmid/&rfr_iscdi=true |