Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application
The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroel...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-03, Vol.124 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 124 |
creator | Han, Bing Xia, Jiake Fu, Zhengqian Hu, Tengfei Li, Zhenqin Cao, Fei Yan, Shiguang Chen, Xuefeng Wang, Genshui Xu, Fangfang |
description | The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications. |
doi_str_mv | 10.1063/5.0191645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2962142526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962142526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AaRWIGU4p_YSZao4k-qxAbWkeOMK1dpHMauUHfcgRtyElzaDRtWo5n59N7MI-SS0RmjStzKGWU1U4U8IhNGyzIXjFXHZEIpFbmqJTslZyGsUiu5EBPSL_xHHmE9Auq4QchC1G0PmQVEDz2YiM58f37pIbo_syyiHoKLzg-Z9ZgZ3PolDGkBA-Bym4Q86iVkehx7Z_QOPCcnVvcBLg51St4e7l_nT_ni5fF5frfIDZc85kK0oKo63WdrKYwuS96akqvKSGptbWlhOKcdU5IXihveidJ0nTVVwTtel62Ykqu97oj-fQMhNiu_wSFZNrxWnBXJRiXqek8Z9CEg2GZEt9a4bRhtdmE2sjmEmdibPRuMi7-__AP_AO2bdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962142526</pqid></control><display><type>article</type><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><source>AIP Journals Complete</source><creator>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</creator><creatorcontrib>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</creatorcontrib><description>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0191645</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Capacitors ; Cryogenic temperature ; Energy storage ; Low temperature ; Multilayers ; Phase transitions ; Raman spectra ; Stability</subject><ispartof>Applied physics letters, 2024-03, Vol.124 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</cites><orcidid>0000-0001-9402-9549 ; 0000-0002-5077-6574 ; 0000-0002-8548-4950 ; 0000-0002-5271-4967 ; 0009-0007-8843-571X ; 0000-0003-1051-2571 ; 0000-0001-7754-7336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0191645$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Xia, Jiake</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Li, Zhenqin</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Wang, Genshui</creatorcontrib><creatorcontrib>Xu, Fangfang</creatorcontrib><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><title>Applied physics letters</title><description>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</description><subject>Antiferroelectricity</subject><subject>Capacitors</subject><subject>Cryogenic temperature</subject><subject>Energy storage</subject><subject>Low temperature</subject><subject>Multilayers</subject><subject>Phase transitions</subject><subject>Raman spectra</subject><subject>Stability</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AaRWIGU4p_YSZao4k-qxAbWkeOMK1dpHMauUHfcgRtyElzaDRtWo5n59N7MI-SS0RmjStzKGWU1U4U8IhNGyzIXjFXHZEIpFbmqJTslZyGsUiu5EBPSL_xHHmE9Auq4QchC1G0PmQVEDz2YiM58f37pIbo_syyiHoKLzg-Z9ZgZ3PolDGkBA-Bym4Q86iVkehx7Z_QOPCcnVvcBLg51St4e7l_nT_ni5fF5frfIDZc85kK0oKo63WdrKYwuS96akqvKSGptbWlhOKcdU5IXihveidJ0nTVVwTtel62Ykqu97oj-fQMhNiu_wSFZNrxWnBXJRiXqek8Z9CEg2GZEt9a4bRhtdmE2sjmEmdibPRuMi7-__AP_AO2bdyo</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Han, Bing</creator><creator>Xia, Jiake</creator><creator>Fu, Zhengqian</creator><creator>Hu, Tengfei</creator><creator>Li, Zhenqin</creator><creator>Cao, Fei</creator><creator>Yan, Shiguang</creator><creator>Chen, Xuefeng</creator><creator>Wang, Genshui</creator><creator>Xu, Fangfang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9402-9549</orcidid><orcidid>https://orcid.org/0000-0002-5077-6574</orcidid><orcidid>https://orcid.org/0000-0002-8548-4950</orcidid><orcidid>https://orcid.org/0000-0002-5271-4967</orcidid><orcidid>https://orcid.org/0009-0007-8843-571X</orcidid><orcidid>https://orcid.org/0000-0003-1051-2571</orcidid><orcidid>https://orcid.org/0000-0001-7754-7336</orcidid></search><sort><creationdate>20240318</creationdate><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><author>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferroelectricity</topic><topic>Capacitors</topic><topic>Cryogenic temperature</topic><topic>Energy storage</topic><topic>Low temperature</topic><topic>Multilayers</topic><topic>Phase transitions</topic><topic>Raman spectra</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Xia, Jiake</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Li, Zhenqin</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Wang, Genshui</creatorcontrib><creatorcontrib>Xu, Fangfang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bing</au><au>Xia, Jiake</au><au>Fu, Zhengqian</au><au>Hu, Tengfei</au><au>Li, Zhenqin</au><au>Cao, Fei</au><au>Yan, Shiguang</au><au>Chen, Xuefeng</au><au>Wang, Genshui</au><au>Xu, Fangfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</atitle><jtitle>Applied physics letters</jtitle><date>2024-03-18</date><risdate>2024</risdate><volume>124</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191645</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9402-9549</orcidid><orcidid>https://orcid.org/0000-0002-5077-6574</orcidid><orcidid>https://orcid.org/0000-0002-8548-4950</orcidid><orcidid>https://orcid.org/0000-0002-5271-4967</orcidid><orcidid>https://orcid.org/0009-0007-8843-571X</orcidid><orcidid>https://orcid.org/0000-0003-1051-2571</orcidid><orcidid>https://orcid.org/0000-0001-7754-7336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-03, Vol.124 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2962142526 |
source | AIP Journals Complete |
subjects | Antiferroelectricity Capacitors Cryogenic temperature Energy storage Low temperature Multilayers Phase transitions Raman spectra Stability |
title | Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20stable%20ferroelectric%E2%80%93antiferroelectric%20transition%20for%20cryogenic%20energy%20storage%20application&rft.jtitle=Applied%20physics%20letters&rft.au=Han,%20Bing&rft.date=2024-03-18&rft.volume=124&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0191645&rft_dat=%3Cproquest_cross%3E2962142526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962142526&rft_id=info:pmid/&rfr_iscdi=true |