Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application

The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-03, Vol.124 (12)
Hauptverfasser: Han, Bing, Xia, Jiake, Fu, Zhengqian, Hu, Tengfei, Li, Zhenqin, Cao, Fei, Yan, Shiguang, Chen, Xuefeng, Wang, Genshui, Xu, Fangfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 124
creator Han, Bing
Xia, Jiake
Fu, Zhengqian
Hu, Tengfei
Li, Zhenqin
Cao, Fei
Yan, Shiguang
Chen, Xuefeng
Wang, Genshui
Xu, Fangfang
description The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.
doi_str_mv 10.1063/5.0191645
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2962142526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962142526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AaRWIGU4p_YSZao4k-qxAbWkeOMK1dpHMauUHfcgRtyElzaDRtWo5n59N7MI-SS0RmjStzKGWU1U4U8IhNGyzIXjFXHZEIpFbmqJTslZyGsUiu5EBPSL_xHHmE9Auq4QchC1G0PmQVEDz2YiM58f37pIbo_syyiHoKLzg-Z9ZgZ3PolDGkBA-Bym4Q86iVkehx7Z_QOPCcnVvcBLg51St4e7l_nT_ni5fF5frfIDZc85kK0oKo63WdrKYwuS96akqvKSGptbWlhOKcdU5IXihveidJ0nTVVwTtel62Ykqu97oj-fQMhNiu_wSFZNrxWnBXJRiXqek8Z9CEg2GZEt9a4bRhtdmE2sjmEmdibPRuMi7-__AP_AO2bdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962142526</pqid></control><display><type>article</type><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><source>AIP Journals Complete</source><creator>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</creator><creatorcontrib>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</creatorcontrib><description>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0191645</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Capacitors ; Cryogenic temperature ; Energy storage ; Low temperature ; Multilayers ; Phase transitions ; Raman spectra ; Stability</subject><ispartof>Applied physics letters, 2024-03, Vol.124 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</cites><orcidid>0000-0001-9402-9549 ; 0000-0002-5077-6574 ; 0000-0002-8548-4950 ; 0000-0002-5271-4967 ; 0009-0007-8843-571X ; 0000-0003-1051-2571 ; 0000-0001-7754-7336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0191645$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Xia, Jiake</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Li, Zhenqin</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Wang, Genshui</creatorcontrib><creatorcontrib>Xu, Fangfang</creatorcontrib><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><title>Applied physics letters</title><description>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</description><subject>Antiferroelectricity</subject><subject>Capacitors</subject><subject>Cryogenic temperature</subject><subject>Energy storage</subject><subject>Low temperature</subject><subject>Multilayers</subject><subject>Phase transitions</subject><subject>Raman spectra</subject><subject>Stability</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AaRWIGU4p_YSZao4k-qxAbWkeOMK1dpHMauUHfcgRtyElzaDRtWo5n59N7MI-SS0RmjStzKGWU1U4U8IhNGyzIXjFXHZEIpFbmqJTslZyGsUiu5EBPSL_xHHmE9Auq4QchC1G0PmQVEDz2YiM58f37pIbo_syyiHoKLzg-Z9ZgZ3PolDGkBA-Bym4Q86iVkehx7Z_QOPCcnVvcBLg51St4e7l_nT_ni5fF5frfIDZc85kK0oKo63WdrKYwuS96akqvKSGptbWlhOKcdU5IXihveidJ0nTVVwTtel62Ykqu97oj-fQMhNiu_wSFZNrxWnBXJRiXqek8Z9CEg2GZEt9a4bRhtdmE2sjmEmdibPRuMi7-__AP_AO2bdyo</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Han, Bing</creator><creator>Xia, Jiake</creator><creator>Fu, Zhengqian</creator><creator>Hu, Tengfei</creator><creator>Li, Zhenqin</creator><creator>Cao, Fei</creator><creator>Yan, Shiguang</creator><creator>Chen, Xuefeng</creator><creator>Wang, Genshui</creator><creator>Xu, Fangfang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9402-9549</orcidid><orcidid>https://orcid.org/0000-0002-5077-6574</orcidid><orcidid>https://orcid.org/0000-0002-8548-4950</orcidid><orcidid>https://orcid.org/0000-0002-5271-4967</orcidid><orcidid>https://orcid.org/0009-0007-8843-571X</orcidid><orcidid>https://orcid.org/0000-0003-1051-2571</orcidid><orcidid>https://orcid.org/0000-0001-7754-7336</orcidid></search><sort><creationdate>20240318</creationdate><title>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</title><author>Han, Bing ; Xia, Jiake ; Fu, Zhengqian ; Hu, Tengfei ; Li, Zhenqin ; Cao, Fei ; Yan, Shiguang ; Chen, Xuefeng ; Wang, Genshui ; Xu, Fangfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-33be689233f953ca772bc7268c50ff9f04c220d1652462c2d37cddfc842d297b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferroelectricity</topic><topic>Capacitors</topic><topic>Cryogenic temperature</topic><topic>Energy storage</topic><topic>Low temperature</topic><topic>Multilayers</topic><topic>Phase transitions</topic><topic>Raman spectra</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Xia, Jiake</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Li, Zhenqin</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Wang, Genshui</creatorcontrib><creatorcontrib>Xu, Fangfang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bing</au><au>Xia, Jiake</au><au>Fu, Zhengqian</au><au>Hu, Tengfei</au><au>Li, Zhenqin</au><au>Cao, Fei</au><au>Yan, Shiguang</au><au>Chen, Xuefeng</au><au>Wang, Genshui</au><au>Xu, Fangfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application</atitle><jtitle>Applied physics letters</jtitle><date>2024-03-18</date><risdate>2024</risdate><volume>124</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The capacitors are in rising demand for cryogenic applications. As for now, it still remains an ongoing challenge for simultaneously achieving high energy storage density and cryogenic temperature stability. Herein, the strategy of stable backward phase transition was demonstrated in the antiferroelectric composition of (Pb0.9175La0.055)(Zr0.975Ti0.025)O3. As a result, we achieved high recoverable energy density about 10 J/cm3 with exceptional low-temperature stability from −160 to 25 °C. Multi-layer ceramic capacitors designed for pulse discharge applications also demonstrated high performance in cryogenic conditions, with the peak current fluctuations of less than 4%. Through in situ characterizations using x-ray diffraction, Raman spectra, and transmission electron microscopy, we discovered that the anisotropic structural evolution is responsible for a stable backward phase transition, providing the material with robust stability at cryogenic temperatures. These results offer a good paradigm for improving the temperature stability of antiferroelectric multi-layer capacitors to meet the rigorous demands of energy storage applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0191645</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9402-9549</orcidid><orcidid>https://orcid.org/0000-0002-5077-6574</orcidid><orcidid>https://orcid.org/0000-0002-8548-4950</orcidid><orcidid>https://orcid.org/0000-0002-5271-4967</orcidid><orcidid>https://orcid.org/0009-0007-8843-571X</orcidid><orcidid>https://orcid.org/0000-0003-1051-2571</orcidid><orcidid>https://orcid.org/0000-0001-7754-7336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-03, Vol.124 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2962142526
source AIP Journals Complete
subjects Antiferroelectricity
Capacitors
Cryogenic temperature
Energy storage
Low temperature
Multilayers
Phase transitions
Raman spectra
Stability
title Low-temperature stable ferroelectric–antiferroelectric transition for cryogenic energy storage application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20stable%20ferroelectric%E2%80%93antiferroelectric%20transition%20for%20cryogenic%20energy%20storage%20application&rft.jtitle=Applied%20physics%20letters&rft.au=Han,%20Bing&rft.date=2024-03-18&rft.volume=124&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0191645&rft_dat=%3Cproquest_cross%3E2962142526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962142526&rft_id=info:pmid/&rfr_iscdi=true