Leader–follower mean field LQ games: A direct method

This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2024-03, Vol.26 (2), p.617-625
1. Verfasser: Wang, Bing‐Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 2
container_start_page 617
container_title Asian journal of control
container_volume 26
creator Wang, Bing‐Chang
description This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an ‐Stackelberg equilibrium. ‐
doi_str_mv 10.1002/asjc.3007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2958139247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958139247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</originalsourceid><addsrcrecordid>eNotkM9Kw0AQhxdRsFYPvkHAk4fU2f-73kqxKgRE0POySWY1IWnqbop48x18Q5_ElHr4MT-Yjxn4CLmksKAA7MantlpwAH1EZtRykSuw_HjqUtHcKCZPyVlKLYCi3MgZUQX6GuPv908Yum74xJj16DdZaLCrs-I5e_M9pttsmdVNxGqctuP7UJ-Tk-C7hBf_c05e13cvq4e8eLp_XC2LvGJSj7kSEo0KSnPBhKoMChVEGRQN2oLFEigztQEjpvDaW1oxBahLSbXVZcn5nFwd7m7j8LHDNLp22MXN9NIxKw3llgk9UdcHqopDShGD28am9_HLUXB7LW6vxe218D-xQFN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958139247</pqid></control><display><type>article</type><title>Leader–follower mean field LQ games: A direct method</title><source>Access via Wiley Online Library</source><creator>Wang, Bing‐Chang</creator><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><description>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an ‐Stackelberg equilibrium. ‐</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.3007</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decoupling ; Differential equations ; Game theory ; Hamiltonian functions ; Optimal control ; Strategy</subject><ispartof>Asian journal of control, 2024-03, Vol.26 (2), p.617-625</ispartof><rights>2024 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</citedby><cites>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</cites><orcidid>0000-0003-3882-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><title>Leader–follower mean field LQ games: A direct method</title><title>Asian journal of control</title><description>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an ‐Stackelberg equilibrium. ‐</description><subject>Decoupling</subject><subject>Differential equations</subject><subject>Game theory</subject><subject>Hamiltonian functions</subject><subject>Optimal control</subject><subject>Strategy</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM9Kw0AQhxdRsFYPvkHAk4fU2f-73kqxKgRE0POySWY1IWnqbop48x18Q5_ElHr4MT-Yjxn4CLmksKAA7MantlpwAH1EZtRykSuw_HjqUtHcKCZPyVlKLYCi3MgZUQX6GuPv908Yum74xJj16DdZaLCrs-I5e_M9pttsmdVNxGqctuP7UJ-Tk-C7hBf_c05e13cvq4e8eLp_XC2LvGJSj7kSEo0KSnPBhKoMChVEGRQN2oLFEigztQEjpvDaW1oxBahLSbXVZcn5nFwd7m7j8LHDNLp22MXN9NIxKw3llgk9UdcHqopDShGD28am9_HLUXB7LW6vxe218D-xQFN5</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Wang, Bing‐Chang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3882-8615</orcidid></search><sort><creationdate>202403</creationdate><title>Leader–follower mean field LQ games: A direct method</title><author>Wang, Bing‐Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoupling</topic><topic>Differential equations</topic><topic>Game theory</topic><topic>Hamiltonian functions</topic><topic>Optimal control</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing‐Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leader–follower mean field LQ games: A direct method</atitle><jtitle>Asian journal of control</jtitle><date>2024-03</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>617</spage><epage>625</epage><pages>617-625</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an ‐Stackelberg equilibrium. ‐</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.3007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3882-8615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2024-03, Vol.26 (2), p.617-625
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2958139247
source Access via Wiley Online Library
subjects Decoupling
Differential equations
Game theory
Hamiltonian functions
Optimal control
Strategy
title Leader–follower mean field LQ games: A direct method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leader%E2%80%93follower%20mean%20field%20LQ%20games:%20A%20direct%20method&rft.jtitle=Asian%20journal%20of%20control&rft.au=Wang,%20Bing%E2%80%90Chang&rft.date=2024-03&rft.volume=26&rft.issue=2&rft.spage=617&rft.epage=625&rft.pages=617-625&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.3007&rft_dat=%3Cproquest_cross%3E2958139247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958139247&rft_id=info:pmid/&rfr_iscdi=true