Leader–follower mean field LQ games: A direct method
This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's stra...
Gespeichert in:
Veröffentlicht in: | Asian journal of control 2024-03, Vol.26 (2), p.617-625 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 2 |
container_start_page | 617 |
container_title | Asian journal of control |
container_volume | 26 |
creator | Wang, Bing‐Chang |
description | This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an
‐Stackelberg equilibrium.
‐ |
doi_str_mv | 10.1002/asjc.3007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2958139247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958139247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</originalsourceid><addsrcrecordid>eNotkM9Kw0AQhxdRsFYPvkHAk4fU2f-73kqxKgRE0POySWY1IWnqbop48x18Q5_ElHr4MT-Yjxn4CLmksKAA7MantlpwAH1EZtRykSuw_HjqUtHcKCZPyVlKLYCi3MgZUQX6GuPv908Yum74xJj16DdZaLCrs-I5e_M9pttsmdVNxGqctuP7UJ-Tk-C7hBf_c05e13cvq4e8eLp_XC2LvGJSj7kSEo0KSnPBhKoMChVEGRQN2oLFEigztQEjpvDaW1oxBahLSbXVZcn5nFwd7m7j8LHDNLp22MXN9NIxKw3llgk9UdcHqopDShGD28am9_HLUXB7LW6vxe218D-xQFN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958139247</pqid></control><display><type>article</type><title>Leader–follower mean field LQ games: A direct method</title><source>Access via Wiley Online Library</source><creator>Wang, Bing‐Chang</creator><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><description>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an
‐Stackelberg equilibrium.
‐</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.3007</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decoupling ; Differential equations ; Game theory ; Hamiltonian functions ; Optimal control ; Strategy</subject><ispartof>Asian journal of control, 2024-03, Vol.26 (2), p.617-625</ispartof><rights>2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</citedby><cites>FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</cites><orcidid>0000-0003-3882-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><title>Leader–follower mean field LQ games: A direct method</title><title>Asian journal of control</title><description>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an
‐Stackelberg equilibrium.
‐</description><subject>Decoupling</subject><subject>Differential equations</subject><subject>Game theory</subject><subject>Hamiltonian functions</subject><subject>Optimal control</subject><subject>Strategy</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM9Kw0AQhxdRsFYPvkHAk4fU2f-73kqxKgRE0POySWY1IWnqbop48x18Q5_ElHr4MT-Yjxn4CLmksKAA7MantlpwAH1EZtRykSuw_HjqUtHcKCZPyVlKLYCi3MgZUQX6GuPv908Yum74xJj16DdZaLCrs-I5e_M9pttsmdVNxGqctuP7UJ-Tk-C7hBf_c05e13cvq4e8eLp_XC2LvGJSj7kSEo0KSnPBhKoMChVEGRQN2oLFEigztQEjpvDaW1oxBahLSbXVZcn5nFwd7m7j8LHDNLp22MXN9NIxKw3llgk9UdcHqopDShGD28am9_HLUXB7LW6vxe218D-xQFN5</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Wang, Bing‐Chang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3882-8615</orcidid></search><sort><creationdate>202403</creationdate><title>Leader–follower mean field LQ games: A direct method</title><author>Wang, Bing‐Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-645e86f6734246c8e46f4bf61f7909eb0128d80848083da91c260e7b51797bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoupling</topic><topic>Differential equations</topic><topic>Game theory</topic><topic>Hamiltonian functions</topic><topic>Optimal control</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bing‐Chang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bing‐Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leader–follower mean field LQ games: A direct method</atitle><jtitle>Asian journal of control</jtitle><date>2024-03</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>617</spage><epage>625</epage><pages>617-625</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper investigates a linear quadratic mean field game with a leader and a large number of followers. The leader first gives its strategy, and then each follower optimizes its own cost. We first solve a mean field game problem, which gives the best response of followers to the leader's strategy. After applying the followers' strategies, the leader is faced to an optimal control problem driven by a high‐dimensional forward‐backward stochastic differential equations (FBSDEs). By decoupling the high‐dimensional Hamiltonian system with mean field approximations, we construct a set of decentralized strategies for all the players, which are further shown to be an
‐Stackelberg equilibrium.
‐</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.3007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3882-8615</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2024-03, Vol.26 (2), p.617-625 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2958139247 |
source | Access via Wiley Online Library |
subjects | Decoupling Differential equations Game theory Hamiltonian functions Optimal control Strategy |
title | Leader–follower mean field LQ games: A direct method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leader%E2%80%93follower%20mean%20field%20LQ%20games:%20A%20direct%20method&rft.jtitle=Asian%20journal%20of%20control&rft.au=Wang,%20Bing%E2%80%90Chang&rft.date=2024-03&rft.volume=26&rft.issue=2&rft.spage=617&rft.epage=625&rft.pages=617-625&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.3007&rft_dat=%3Cproquest_cross%3E2958139247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958139247&rft_id=info:pmid/&rfr_iscdi=true |