High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation
Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, elec...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2024-03, Vol.2024, p.1-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Kim, Min Gi Gaur, Ashish Jang, Jin Uk Na, Kyeong-Han Choi, Won-Youl Han, HyukSu |
description | Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts. |
doi_str_mv | 10.1155/2024/9996841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2958096529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958096529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYje_AFNvGi00nY_eyQExATFRE2Il83QDygsW2yXIP56l8DZy8xhnved5EHomtFHxpKkwymPO0KINI_ZCWoxKgRhLJ6cohaN0ogImk3O0UUIC0qbG8taaDm0sznpV7V36x3ugZ-6Cmod8O2rJS8V6Tny1UxPBvoOQ8CA37xb2WCrGe6XWjY5CTWUu1Bj4zzulkso7a9W-F3DtmnyePxjFdTWVZfozEAZ9NVxt9HnoP_RG5LR-Om51x0RyUVck6nKTU61SpTJmRTGZMCNzE08hTwGBlxGTPFMacgUVVKnXKcmMywGyqYxlVEb3Rx61959b3Soi4Xb-Kp5WXCR5FSkCRcN9XCgpHcheG2Ktbcr8LuC0WKvs9jrLI46G_z-gM9tpWBr_6f_AIDndZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958096529</pqid></control><display><type>article</type><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>ProQuest Central UK/Ireland</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu</creator><contributor>Thangjam Ibomcha Singh, Thangjam Ibomcha ; Thangjam Ibomcha Thangjam Ibomcha Singh</contributor><creatorcontrib>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu ; Thangjam Ibomcha Singh, Thangjam Ibomcha ; Thangjam Ibomcha Thangjam Ibomcha Singh</creatorcontrib><description>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/9996841</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Alkaline water ; Carbon black ; Carbonates ; Catalysts ; Catalytic activity ; Chloride ions ; Cobalt ; Corrosion ; Corrosion resistance ; Electrocatalysts ; Electrodes ; Electrolysis ; Electrolytes ; Entropy ; Fourier transforms ; Freshwater ; Freshwater resources ; Hydrogen ; Inland water environment ; Ions ; Manganese ; Nickel ; Nitrates ; Oxidation ; Oxygen evolution reactions ; Protected species ; Raw materials ; Scanning electron microscopy ; Seawater ; Spectrum analysis ; Stability ; Temperature ; Thermogravimetric analysis ; Voltammetry ; Zinc</subject><ispartof>International journal of energy research, 2024-03, Vol.2024, p.1-16</ispartof><rights>Copyright © 2024 Min Gi Kim et al.</rights><rights>Copyright © 2024 Min Gi Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</cites><orcidid>0000-0002-2181-827X ; 0000-0001-7230-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2958096529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2958096529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,877,21388,27924,27925,33744,43805,64385,64389,72469,74302</link.rule.ids></links><search><contributor>Thangjam Ibomcha Singh, Thangjam Ibomcha</contributor><contributor>Thangjam Ibomcha Thangjam Ibomcha Singh</contributor><creatorcontrib>Kim, Min Gi</creatorcontrib><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Jang, Jin Uk</creatorcontrib><creatorcontrib>Na, Kyeong-Han</creatorcontrib><creatorcontrib>Choi, Won-Youl</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><title>International journal of energy research</title><description>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</description><subject>Alkaline water</subject><subject>Carbon black</subject><subject>Carbonates</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chloride ions</subject><subject>Cobalt</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Entropy</subject><subject>Fourier transforms</subject><subject>Freshwater</subject><subject>Freshwater resources</subject><subject>Hydrogen</subject><subject>Inland water environment</subject><subject>Ions</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Protected species</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Temperature</subject><subject>Thermogravimetric analysis</subject><subject>Voltammetry</subject><subject>Zinc</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEQhhujiYje_AFNvGi00nY_eyQExATFRE2Il83QDygsW2yXIP56l8DZy8xhnved5EHomtFHxpKkwymPO0KINI_ZCWoxKgRhLJ6cohaN0ogImk3O0UUIC0qbG8taaDm0sznpV7V36x3ugZ-6Cmod8O2rJS8V6Tny1UxPBvoOQ8CA37xb2WCrGe6XWjY5CTWUu1Bj4zzulkso7a9W-F3DtmnyePxjFdTWVZfozEAZ9NVxt9HnoP_RG5LR-Om51x0RyUVck6nKTU61SpTJmRTGZMCNzE08hTwGBlxGTPFMacgUVVKnXKcmMywGyqYxlVEb3Rx61959b3Soi4Xb-Kp5WXCR5FSkCRcN9XCgpHcheG2Ktbcr8LuC0WKvs9jrLI46G_z-gM9tpWBr_6f_AIDndZE</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Kim, Min Gi</creator><creator>Gaur, Ashish</creator><creator>Jang, Jin Uk</creator><creator>Na, Kyeong-Han</creator><creator>Choi, Won-Youl</creator><creator>Han, HyukSu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2181-827X</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid></search><sort><creationdate>20240306</creationdate><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><author>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline water</topic><topic>Carbon black</topic><topic>Carbonates</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chloride ions</topic><topic>Cobalt</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Entropy</topic><topic>Fourier transforms</topic><topic>Freshwater</topic><topic>Freshwater resources</topic><topic>Hydrogen</topic><topic>Inland water environment</topic><topic>Ions</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Protected species</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Temperature</topic><topic>Thermogravimetric analysis</topic><topic>Voltammetry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min Gi</creatorcontrib><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Jang, Jin Uk</creatorcontrib><creatorcontrib>Na, Kyeong-Han</creatorcontrib><creatorcontrib>Choi, Won-Youl</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min Gi</au><au>Gaur, Ashish</au><au>Jang, Jin Uk</au><au>Na, Kyeong-Han</au><au>Choi, Won-Youl</au><au>Han, HyukSu</au><au>Thangjam Ibomcha Singh, Thangjam Ibomcha</au><au>Thangjam Ibomcha Thangjam Ibomcha Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</atitle><jtitle>International journal of energy research</jtitle><date>2024-03-06</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2024/9996841</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2181-827X</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-03, Vol.2024, p.1-16 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2958096529 |
source | Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; ProQuest Central UK/Ireland; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; ProQuest Central |
subjects | Alkaline water Carbon black Carbonates Catalysts Catalytic activity Chloride ions Cobalt Corrosion Corrosion resistance Electrocatalysts Electrodes Electrolysis Electrolytes Entropy Fourier transforms Freshwater Freshwater resources Hydrogen Inland water environment Ions Manganese Nickel Nitrates Oxidation Oxygen evolution reactions Protected species Raw materials Scanning electron microscopy Seawater Spectrum analysis Stability Temperature Thermogravimetric analysis Voltammetry Zinc |
title | High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Entropy%20Carbonates%20(Ni-Mn-Co-Zn-Cr-Fe)%20as%20a%20Promising%20Electrocatalyst%20for%20Alkalized%20Seawater%20Oxidation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Kim,%20Min%20Gi&rft.date=2024-03-06&rft.volume=2024&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/9996841&rft_dat=%3Cproquest_cross%3E2958096529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958096529&rft_id=info:pmid/&rfr_iscdi=true |