High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation

Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2024-03, Vol.2024, p.1-16
Hauptverfasser: Kim, Min Gi, Gaur, Ashish, Jang, Jin Uk, Na, Kyeong-Han, Choi, Won-Youl, Han, HyukSu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title International journal of energy research
container_volume 2024
creator Kim, Min Gi
Gaur, Ashish
Jang, Jin Uk
Na, Kyeong-Han
Choi, Won-Youl
Han, HyukSu
description Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.
doi_str_mv 10.1155/2024/9996841
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2958096529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958096529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYje_AFNvGi00nY_eyQExATFRE2Il83QDygsW2yXIP56l8DZy8xhnved5EHomtFHxpKkwymPO0KINI_ZCWoxKgRhLJ6cohaN0ogImk3O0UUIC0qbG8taaDm0sznpV7V36x3ugZ-6Cmod8O2rJS8V6Tny1UxPBvoOQ8CA37xb2WCrGe6XWjY5CTWUu1Bj4zzulkso7a9W-F3DtmnyePxjFdTWVZfozEAZ9NVxt9HnoP_RG5LR-Om51x0RyUVck6nKTU61SpTJmRTGZMCNzE08hTwGBlxGTPFMacgUVVKnXKcmMywGyqYxlVEb3Rx61959b3Soi4Xb-Kp5WXCR5FSkCRcN9XCgpHcheG2Ktbcr8LuC0WKvs9jrLI46G_z-gM9tpWBr_6f_AIDndZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958096529</pqid></control><display><type>article</type><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>ProQuest Central UK/Ireland</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu</creator><contributor>Thangjam Ibomcha Singh, Thangjam Ibomcha ; Thangjam Ibomcha Thangjam Ibomcha Singh</contributor><creatorcontrib>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu ; Thangjam Ibomcha Singh, Thangjam Ibomcha ; Thangjam Ibomcha Thangjam Ibomcha Singh</creatorcontrib><description>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/9996841</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Alkaline water ; Carbon black ; Carbonates ; Catalysts ; Catalytic activity ; Chloride ions ; Cobalt ; Corrosion ; Corrosion resistance ; Electrocatalysts ; Electrodes ; Electrolysis ; Electrolytes ; Entropy ; Fourier transforms ; Freshwater ; Freshwater resources ; Hydrogen ; Inland water environment ; Ions ; Manganese ; Nickel ; Nitrates ; Oxidation ; Oxygen evolution reactions ; Protected species ; Raw materials ; Scanning electron microscopy ; Seawater ; Spectrum analysis ; Stability ; Temperature ; Thermogravimetric analysis ; Voltammetry ; Zinc</subject><ispartof>International journal of energy research, 2024-03, Vol.2024, p.1-16</ispartof><rights>Copyright © 2024 Min Gi Kim et al.</rights><rights>Copyright © 2024 Min Gi Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</cites><orcidid>0000-0002-2181-827X ; 0000-0001-7230-612X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2958096529/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2958096529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,877,21388,27924,27925,33744,43805,64385,64389,72469,74302</link.rule.ids></links><search><contributor>Thangjam Ibomcha Singh, Thangjam Ibomcha</contributor><contributor>Thangjam Ibomcha Thangjam Ibomcha Singh</contributor><creatorcontrib>Kim, Min Gi</creatorcontrib><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Jang, Jin Uk</creatorcontrib><creatorcontrib>Na, Kyeong-Han</creatorcontrib><creatorcontrib>Choi, Won-Youl</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><title>International journal of energy research</title><description>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</description><subject>Alkaline water</subject><subject>Carbon black</subject><subject>Carbonates</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chloride ions</subject><subject>Cobalt</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Entropy</subject><subject>Fourier transforms</subject><subject>Freshwater</subject><subject>Freshwater resources</subject><subject>Hydrogen</subject><subject>Inland water environment</subject><subject>Ions</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Protected species</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Temperature</subject><subject>Thermogravimetric analysis</subject><subject>Voltammetry</subject><subject>Zinc</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEQhhujiYje_AFNvGi00nY_eyQExATFRE2Il83QDygsW2yXIP56l8DZy8xhnved5EHomtFHxpKkwymPO0KINI_ZCWoxKgRhLJ6cohaN0ogImk3O0UUIC0qbG8taaDm0sznpV7V36x3ugZ-6Cmod8O2rJS8V6Tny1UxPBvoOQ8CA37xb2WCrGe6XWjY5CTWUu1Bj4zzulkso7a9W-F3DtmnyePxjFdTWVZfozEAZ9NVxt9HnoP_RG5LR-Om51x0RyUVck6nKTU61SpTJmRTGZMCNzE08hTwGBlxGTPFMacgUVVKnXKcmMywGyqYxlVEb3Rx61959b3Soi4Xb-Kp5WXCR5FSkCRcN9XCgpHcheG2Ktbcr8LuC0WKvs9jrLI46G_z-gM9tpWBr_6f_AIDndZE</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Kim, Min Gi</creator><creator>Gaur, Ashish</creator><creator>Jang, Jin Uk</creator><creator>Na, Kyeong-Han</creator><creator>Choi, Won-Youl</creator><creator>Han, HyukSu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2181-827X</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid></search><sort><creationdate>20240306</creationdate><title>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</title><author>Kim, Min Gi ; Gaur, Ashish ; Jang, Jin Uk ; Na, Kyeong-Han ; Choi, Won-Youl ; Han, HyukSu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bd8f80ed5df81c9ff7a2fc8f4ba84a1a2c31d27dea7d0dce62e6f7f14a01b40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaline water</topic><topic>Carbon black</topic><topic>Carbonates</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chloride ions</topic><topic>Cobalt</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Entropy</topic><topic>Fourier transforms</topic><topic>Freshwater</topic><topic>Freshwater resources</topic><topic>Hydrogen</topic><topic>Inland water environment</topic><topic>Ions</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Protected species</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Temperature</topic><topic>Thermogravimetric analysis</topic><topic>Voltammetry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min Gi</creatorcontrib><creatorcontrib>Gaur, Ashish</creatorcontrib><creatorcontrib>Jang, Jin Uk</creatorcontrib><creatorcontrib>Na, Kyeong-Han</creatorcontrib><creatorcontrib>Choi, Won-Youl</creatorcontrib><creatorcontrib>Han, HyukSu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min Gi</au><au>Gaur, Ashish</au><au>Jang, Jin Uk</au><au>Na, Kyeong-Han</au><au>Choi, Won-Youl</au><au>Han, HyukSu</au><au>Thangjam Ibomcha Singh, Thangjam Ibomcha</au><au>Thangjam Ibomcha Thangjam Ibomcha Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation</atitle><jtitle>International journal of energy research</jtitle><date>2024-03-06</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Direct seawater splitting has attracted considerable attention as an alternative to conventional alkaline water electrolysis because the former avoids the use of limited freshwater resources. However, several challenges must be overcome to realize direct seawater electrolysis. Most importantly, electrocatalysts for the anodic oxygen evolution reaction (OER) should exhibit high activity, stability, and selectivity in highly corrosive environments with abundant chloride ions. In this study, we developed high-entropy carbonate (HEC) as a promising electrocatalyst for seawater oxidation. In HECs, physicochemical interactions among different elements can effectively suppress the corrosion of OER active sites, while polyanionic CO32- can act as a corrosion-protective species by repelling negatively charged chloride ions during electrolysis. Consequently, HECs demonstrate outstanding catalytic activity, stability, and selectivity for seawater oxidation, surpassing those of ternary, quaternary, and quinary carbonates and even benchmark IrO2 catalysts.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2024/9996841</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2181-827X</orcidid><orcidid>https://orcid.org/0000-0001-7230-612X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2024-03, Vol.2024, p.1-16
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2958096529
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; ProQuest Central UK/Ireland; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; ProQuest Central
subjects Alkaline water
Carbon black
Carbonates
Catalysts
Catalytic activity
Chloride ions
Cobalt
Corrosion
Corrosion resistance
Electrocatalysts
Electrodes
Electrolysis
Electrolytes
Entropy
Fourier transforms
Freshwater
Freshwater resources
Hydrogen
Inland water environment
Ions
Manganese
Nickel
Nitrates
Oxidation
Oxygen evolution reactions
Protected species
Raw materials
Scanning electron microscopy
Seawater
Spectrum analysis
Stability
Temperature
Thermogravimetric analysis
Voltammetry
Zinc
title High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Entropy%20Carbonates%20(Ni-Mn-Co-Zn-Cr-Fe)%20as%20a%20Promising%20Electrocatalyst%20for%20Alkalized%20Seawater%20Oxidation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Kim,%20Min%20Gi&rft.date=2024-03-06&rft.volume=2024&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/9996841&rft_dat=%3Cproquest_cross%3E2958096529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958096529&rft_id=info:pmid/&rfr_iscdi=true