High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode
In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –...
Gespeichert in:
Veröffentlicht in: | Ionics 2024-03, Vol.30 (3), p.1709-1722 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1722 |
---|---|
container_issue | 3 |
container_start_page | 1709 |
container_title | Ionics |
container_volume | 30 |
creator | Raoufi, Roohina Arvand, Majid Farahpour, Mona |
description | In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L
–1
KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g
–1
, ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g
–1
. The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g
–1
at a current density of 1 A g
–1
, with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors. |
doi_str_mv | 10.1007/s11581-024-05381-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957946421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957946421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMZs-fzsjqiitVKkMsHSxHNcuqUoS7GSgvx5DkNiY3h3OvU86CN0SuCcAapYIEZpgoByDYDmdztCEaEkxKAnnaAIlV1gBV5foKqUDgJSEqgl6Xtb7tyJ13tWhdkUaYrDOFzZ6W2ybzWy7WmCpisY2berj4Poh-lTYlMnOR2c76-q-jYU_etfHduev0UWwx-Rvfu8UvS4eX-ZLvN48reYPa-wYKXtcUR80B0IkMAuVYt5pHWyolNRCCEV3LMdKUwuecQJaEbIruQjBAWMVZVN0N-52sf0YfOrNoR1ik18aWgpVcskpyRQdKRfblKIPpov1u42fhoD5NmdGcyabMz_mzCmX2FhKGW72Pv5N_9P6ApAocL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957946421</pqid></control><display><type>article</type><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><source>SpringerNature Journals</source><creator>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</creator><creatorcontrib>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</creatorcontrib><description>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L
–1
KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g
–1
, ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g
–1
. The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g
–1
at a current density of 1 A g
–1
, with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05381-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capacitance ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Current density ; Discharge ; Electrochemistry ; Electrodes ; Energy Storage ; Metal foams ; Nanostructure ; Optical and Electronic Materials ; Renewable and Green Energy ; Supercapacitors ; Zinc oxide</subject><ispartof>Ionics, 2024-03, Vol.30 (3), p.1709-1722</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</citedby><cites>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</cites><orcidid>0000-0002-5824-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05381-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05381-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Raoufi, Roohina</creatorcontrib><creatorcontrib>Arvand, Majid</creatorcontrib><creatorcontrib>Farahpour, Mona</creatorcontrib><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L
–1
KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g
–1
, ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g
–1
. The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g
–1
at a current density of 1 A g
–1
, with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</description><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Metal foams</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Renewable and Green Energy</subject><subject>Supercapacitors</subject><subject>Zinc oxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMZs-fzsjqiitVKkMsHSxHNcuqUoS7GSgvx5DkNiY3h3OvU86CN0SuCcAapYIEZpgoByDYDmdztCEaEkxKAnnaAIlV1gBV5foKqUDgJSEqgl6Xtb7tyJ13tWhdkUaYrDOFzZ6W2ybzWy7WmCpisY2berj4Poh-lTYlMnOR2c76-q-jYU_etfHduev0UWwx-Rvfu8UvS4eX-ZLvN48reYPa-wYKXtcUR80B0IkMAuVYt5pHWyolNRCCEV3LMdKUwuecQJaEbIruQjBAWMVZVN0N-52sf0YfOrNoR1ik18aWgpVcskpyRQdKRfblKIPpov1u42fhoD5NmdGcyabMz_mzCmX2FhKGW72Pv5N_9P6ApAocL0</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Raoufi, Roohina</creator><creator>Arvand, Majid</creator><creator>Farahpour, Mona</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5824-8688</orcidid></search><sort><creationdate>20240301</creationdate><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><author>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Metal foams</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Renewable and Green Energy</topic><topic>Supercapacitors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raoufi, Roohina</creatorcontrib><creatorcontrib>Arvand, Majid</creatorcontrib><creatorcontrib>Farahpour, Mona</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raoufi, Roohina</au><au>Arvand, Majid</au><au>Farahpour, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><spage>1709</spage><epage>1722</epage><pages>1709-1722</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L
–1
KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g
–1
, ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g
–1
. The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g
–1
at a current density of 1 A g
–1
, with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05381-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5824-8688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2024-03, Vol.30 (3), p.1709-1722 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2957946421 |
source | SpringerNature Journals |
subjects | Capacitance Chemistry Chemistry and Materials Science Condensed Matter Physics Current density Discharge Electrochemistry Electrodes Energy Storage Metal foams Nanostructure Optical and Electronic Materials Renewable and Green Energy Supercapacitors Zinc oxide |
title | High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20specific%20surface%20area%20ZnO/ZIF-67%20nanostructures%20as%20supercapacitor%20electrode&rft.jtitle=Ionics&rft.au=Raoufi,%20Roohina&rft.date=2024-03-01&rft.volume=30&rft.issue=3&rft.spage=1709&rft.epage=1722&rft.pages=1709-1722&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05381-z&rft_dat=%3Cproquest_cross%3E2957946421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957946421&rft_id=info:pmid/&rfr_iscdi=true |