High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode

In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2024-03, Vol.30 (3), p.1709-1722
Hauptverfasser: Raoufi, Roohina, Arvand, Majid, Farahpour, Mona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1722
container_issue 3
container_start_page 1709
container_title Ionics
container_volume 30
creator Raoufi, Roohina
Arvand, Majid
Farahpour, Mona
description In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –1 , ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g –1 . The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g –1 at a current density of 1 A g –1 , with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.
doi_str_mv 10.1007/s11581-024-05381-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957946421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957946421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMZs-fzsjqiitVKkMsHSxHNcuqUoS7GSgvx5DkNiY3h3OvU86CN0SuCcAapYIEZpgoByDYDmdztCEaEkxKAnnaAIlV1gBV5foKqUDgJSEqgl6Xtb7tyJ13tWhdkUaYrDOFzZ6W2ybzWy7WmCpisY2berj4Poh-lTYlMnOR2c76-q-jYU_etfHduev0UWwx-Rvfu8UvS4eX-ZLvN48reYPa-wYKXtcUR80B0IkMAuVYt5pHWyolNRCCEV3LMdKUwuecQJaEbIruQjBAWMVZVN0N-52sf0YfOrNoR1ik18aWgpVcskpyRQdKRfblKIPpov1u42fhoD5NmdGcyabMz_mzCmX2FhKGW72Pv5N_9P6ApAocL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957946421</pqid></control><display><type>article</type><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><source>SpringerNature Journals</source><creator>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</creator><creatorcontrib>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</creatorcontrib><description>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –1 , ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g –1 . The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g –1 at a current density of 1 A g –1 , with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05381-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capacitance ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Current density ; Discharge ; Electrochemistry ; Electrodes ; Energy Storage ; Metal foams ; Nanostructure ; Optical and Electronic Materials ; Renewable and Green Energy ; Supercapacitors ; Zinc oxide</subject><ispartof>Ionics, 2024-03, Vol.30 (3), p.1709-1722</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</citedby><cites>FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</cites><orcidid>0000-0002-5824-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05381-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05381-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Raoufi, Roohina</creatorcontrib><creatorcontrib>Arvand, Majid</creatorcontrib><creatorcontrib>Farahpour, Mona</creatorcontrib><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –1 , ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g –1 . The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g –1 at a current density of 1 A g –1 , with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</description><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Metal foams</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Renewable and Green Energy</subject><subject>Supercapacitors</subject><subject>Zinc oxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMZs-fzsjqiitVKkMsHSxHNcuqUoS7GSgvx5DkNiY3h3OvU86CN0SuCcAapYIEZpgoByDYDmdztCEaEkxKAnnaAIlV1gBV5foKqUDgJSEqgl6Xtb7tyJ13tWhdkUaYrDOFzZ6W2ybzWy7WmCpisY2berj4Poh-lTYlMnOR2c76-q-jYU_etfHduev0UWwx-Rvfu8UvS4eX-ZLvN48reYPa-wYKXtcUR80B0IkMAuVYt5pHWyolNRCCEV3LMdKUwuecQJaEbIruQjBAWMVZVN0N-52sf0YfOrNoR1ik18aWgpVcskpyRQdKRfblKIPpov1u42fhoD5NmdGcyabMz_mzCmX2FhKGW72Pv5N_9P6ApAocL0</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Raoufi, Roohina</creator><creator>Arvand, Majid</creator><creator>Farahpour, Mona</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5824-8688</orcidid></search><sort><creationdate>20240301</creationdate><title>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</title><author>Raoufi, Roohina ; Arvand, Majid ; Farahpour, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b2ef84011603a0b73ec88fafb76855572d3b76b82a0e34108711d945ffc033b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Metal foams</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Renewable and Green Energy</topic><topic>Supercapacitors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raoufi, Roohina</creatorcontrib><creatorcontrib>Arvand, Majid</creatorcontrib><creatorcontrib>Farahpour, Mona</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raoufi, Roohina</au><au>Arvand, Majid</au><au>Farahpour, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><spage>1709</spage><epage>1722</epage><pages>1709-1722</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this study, ZnO/ZIF-67 was synthesized on nickel foam and subsequently evaluated for its chemical behavior using a three-electrode system in a 2 mol L –1 KOH electrolyte. Cyclic voltammetry and galvanostatic charge and discharge analysis measurements were employed. At a current density of 1 A g –1 , ZnO/ZIF-67 exhibited the highest specific capacitance of 2908 F g –1 . The suggested electrode demonstrated excellent cycle stability, maintaining its performance over 5000 charge–discharge cycles. Furthermore, the retention capacity of ZnO/ZIF-67 was determined to be 95.3%, accompanied by an approximate 100% coulombic efficiency. Subsequently, an asymmetric supercapacitor was constructed to investigate the system's capacitive behavior. The maximum specific capacitance of the two-electrode device was obtained as 264.4 F g –1 at a current density of 1 A g –1 , with approximately 78.8% of the capacitance retained even after 5000 charge–discharge cycles. These results highlight the potential utilization of ZnO/ZIF-67 nanostructures in advancing the development of next-generation supercapacitors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05381-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5824-8688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024-03, Vol.30 (3), p.1709-1722
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2957946421
source SpringerNature Journals
subjects Capacitance
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Current density
Discharge
Electrochemistry
Electrodes
Energy Storage
Metal foams
Nanostructure
Optical and Electronic Materials
Renewable and Green Energy
Supercapacitors
Zinc oxide
title High specific surface area ZnO/ZIF-67 nanostructures as supercapacitor electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20specific%20surface%20area%20ZnO/ZIF-67%20nanostructures%20as%20supercapacitor%20electrode&rft.jtitle=Ionics&rft.au=Raoufi,%20Roohina&rft.date=2024-03-01&rft.volume=30&rft.issue=3&rft.spage=1709&rft.epage=1722&rft.pages=1709-1722&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05381-z&rft_dat=%3Cproquest_cross%3E2957946421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957946421&rft_id=info:pmid/&rfr_iscdi=true