Uncertainty principles for the biquaternion offset linear canonical transform

In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Dono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 22
1. Verfasser: Gao, Wen-Biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 15
creator Gao, Wen-Biao
description In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.
doi_str_mv 10.1007/s11868-024-00590-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957741409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957741409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</originalsourceid><addsrcrecordid>eNp9kD1PAzEMhiMEElXpH2CKxHxgX-4jGVHFR6UiFiqxRbnUgauuuTZJh_57rhyCDS_28D62_DB2jXCLAPVdRJSVzCAvMoBSQVadsQlWVZ4ppd7Pf2eJl2wW4waGEkogigl7WXlLIZnWpyPfhdbbdtdR5K4PPH0Sb9r9wSQKvu09752LlHjXejKBW-N731rT8RSMjwOxvWIXznSRZj99ylaPD2_z52z5-rSY3y8zm9eQskraEmgNBhqXV1gIZwpVNkKslastNFKqkhxZJZoSXYFO5LImg0SuwcZJMWU3495d6PcHiklv-kPww0mdq7KuCyxADal8TNnQxxjI6eHBrQlHjaBP5vRoTg_m9Lc5XQ2QGKF4svFB4W_1P9QXaBpygw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957741409</pqid></control><display><type>article</type><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><source>SpringerLink Journals</source><creator>Gao, Wen-Biao</creator><creatorcontrib>Gao, Wen-Biao</creatorcontrib><description>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00590-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Partial Differential Equations ; Principles ; Signal reconstruction ; Uncertainty principles</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00590-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00590-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gao, Wen-Biao</creatorcontrib><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Partial Differential Equations</subject><subject>Principles</subject><subject>Signal reconstruction</subject><subject>Uncertainty principles</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PAzEMhiMEElXpH2CKxHxgX-4jGVHFR6UiFiqxRbnUgauuuTZJh_57rhyCDS_28D62_DB2jXCLAPVdRJSVzCAvMoBSQVadsQlWVZ4ppd7Pf2eJl2wW4waGEkogigl7WXlLIZnWpyPfhdbbdtdR5K4PPH0Sb9r9wSQKvu09752LlHjXejKBW-N731rT8RSMjwOxvWIXznSRZj99ylaPD2_z52z5-rSY3y8zm9eQskraEmgNBhqXV1gIZwpVNkKslastNFKqkhxZJZoSXYFO5LImg0SuwcZJMWU3495d6PcHiklv-kPww0mdq7KuCyxADal8TNnQxxjI6eHBrQlHjaBP5vRoTg_m9Lc5XQ2QGKF4svFB4W_1P9QXaBpygw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gao, Wen-Biao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><author>Gao, Wen-Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Partial Differential Equations</topic><topic>Principles</topic><topic>Signal reconstruction</topic><topic>Uncertainty principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wen-Biao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wen-Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty principles for the biquaternion offset linear canonical transform</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>22</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00590-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 22
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_2957741409
source SpringerLink Journals
subjects Algebra
Analysis
Applications of Mathematics
Functional Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Partial Differential Equations
Principles
Signal reconstruction
Uncertainty principles
title Uncertainty principles for the biquaternion offset linear canonical transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20principles%20for%20the%20biquaternion%20offset%20linear%20canonical%20transform&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Gao,%20Wen-Biao&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=22&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00590-6&rft_dat=%3Cproquest_cross%3E2957741409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957741409&rft_id=info:pmid/&rfr_iscdi=true