Uncertainty principles for the biquaternion offset linear canonical transform
In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Dono...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of pseudo-differential operators and applications |
container_volume | 15 |
creator | Gao, Wen-Biao |
description | In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT. |
doi_str_mv | 10.1007/s11868-024-00590-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957741409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957741409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</originalsourceid><addsrcrecordid>eNp9kD1PAzEMhiMEElXpH2CKxHxgX-4jGVHFR6UiFiqxRbnUgauuuTZJh_57rhyCDS_28D62_DB2jXCLAPVdRJSVzCAvMoBSQVadsQlWVZ4ppd7Pf2eJl2wW4waGEkogigl7WXlLIZnWpyPfhdbbdtdR5K4PPH0Sb9r9wSQKvu09752LlHjXejKBW-N731rT8RSMjwOxvWIXznSRZj99ylaPD2_z52z5-rSY3y8zm9eQskraEmgNBhqXV1gIZwpVNkKslastNFKqkhxZJZoSXYFO5LImg0SuwcZJMWU3495d6PcHiklv-kPww0mdq7KuCyxADal8TNnQxxjI6eHBrQlHjaBP5vRoTg_m9Lc5XQ2QGKF4svFB4W_1P9QXaBpygw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957741409</pqid></control><display><type>article</type><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><source>SpringerLink Journals</source><creator>Gao, Wen-Biao</creator><creatorcontrib>Gao, Wen-Biao</creatorcontrib><description>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00590-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Partial Differential Equations ; Principles ; Signal reconstruction ; Uncertainty principles</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00590-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00590-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gao, Wen-Biao</creatorcontrib><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Partial Differential Equations</subject><subject>Principles</subject><subject>Signal reconstruction</subject><subject>Uncertainty principles</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PAzEMhiMEElXpH2CKxHxgX-4jGVHFR6UiFiqxRbnUgauuuTZJh_57rhyCDS_28D62_DB2jXCLAPVdRJSVzCAvMoBSQVadsQlWVZ4ppd7Pf2eJl2wW4waGEkogigl7WXlLIZnWpyPfhdbbdtdR5K4PPH0Sb9r9wSQKvu09752LlHjXejKBW-N731rT8RSMjwOxvWIXznSRZj99ylaPD2_z52z5-rSY3y8zm9eQskraEmgNBhqXV1gIZwpVNkKslastNFKqkhxZJZoSXYFO5LImg0SuwcZJMWU3495d6PcHiklv-kPww0mdq7KuCyxADal8TNnQxxjI6eHBrQlHjaBP5vRoTg_m9Lc5XQ2QGKF4svFB4W_1P9QXaBpygw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gao, Wen-Biao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Uncertainty principles for the biquaternion offset linear canonical transform</title><author>Gao, Wen-Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-68c50ed0a0bf26143fa495b33d9f7c0b8895efec93b51f41f3287ea1eefb1bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Partial Differential Equations</topic><topic>Principles</topic><topic>Signal reconstruction</topic><topic>Uncertainty principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wen-Biao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wen-Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty principles for the biquaternion offset linear canonical transform</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>22</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00590-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-9981 |
ispartof | Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 22 |
issn | 1662-9981 1662-999X |
language | eng |
recordid | cdi_proquest_journals_2957741409 |
source | SpringerLink Journals |
subjects | Algebra Analysis Applications of Mathematics Functional Analysis Mathematics Mathematics and Statistics Operator Theory Partial Differential Equations Principles Signal reconstruction Uncertainty principles |
title | Uncertainty principles for the biquaternion offset linear canonical transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20principles%20for%20the%20biquaternion%20offset%20linear%20canonical%20transform&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Gao,%20Wen-Biao&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=22&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00590-6&rft_dat=%3Cproquest_cross%3E2957741409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957741409&rft_id=info:pmid/&rfr_iscdi=true |