A nonlocal Lagrangian traffic flow model and the zero-filter limit

In this study, we start from a Follow-the-Leaders model for traffic flow that is based on a weighted harmonic mean (in Lagrangian coordinates) of the downstream car density. This results in a nonlocal Lagrangian partial differential equation (PDE) model for traffic flow. We demonstrate the well-pose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024-04, Vol.75 (2), Article Paper No. 66, 31
Hauptverfasser: Coclite, G. M., Karlsen, K. H., Risebro, N. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we start from a Follow-the-Leaders model for traffic flow that is based on a weighted harmonic mean (in Lagrangian coordinates) of the downstream car density. This results in a nonlocal Lagrangian partial differential equation (PDE) model for traffic flow. We demonstrate the well-posedness of the Lagrangian model in the L 1 sense. Additionally, we rigorously show that our model coincides with the Lagrangian formulation of the local LWR model in the “zero-filter” (nonlocal-to-local) limit. We present numerical simulations of the new model. One significant advantage of the proposed model is that it allows for simple proofs of (i) estimates that do not depend on the “filter size” and (ii) the dissipation of an arbitrary convex entropy.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-023-02153-z