High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries
Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a s...
Gespeichert in:
Veröffentlicht in: | Advanced fiber materials (Online) 2024-02, Vol.6 (1), p.214-228 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 214 |
container_title | Advanced fiber materials (Online) |
container_volume | 6 |
creator | Kang, Dong Hyuk Park, Minhyuck Lee, Jeonghun Kim, Chan Yeol Park, Jimin Lee, Youn-Ki Hyun, Jong Chan Ha, Son Kwak, Jin Hwan Yoon, Juhee Kim, Hyemin Kim, Hyun Soo Kim, Do Hyun Kim, Sangmin Park, Ji Yong Jang, Robin Yang, Seung Jae Lim, Hee-Dae Cho, Se Youn Jin, Hyoung-Joon Lee, Seungjin Hwang, Yunil Yun, Young Soo |
description | Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//
t
-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm
−2
, a high volumetric power density of ~ 1720 W L
−1
, and an outstanding specific energy of ~ 470 W h kg
−1
at only 6 mA h cm
−2
.
Graphical Abstract
TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li//
t
-NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance. |
doi_str_mv | 10.1007/s42765-023-00347-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957631274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957631274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPAczQfm489alErVOyhgngJyW62u-12U5MtuP_e6IrePM3AvM8M8wBwQfAVwVhex4xKwRGmDGHMMonUEZhQTjMkc_Z6_NtTcgqmMW4wxlQSTCmegLd5s67R0oXKh53pCgdXdVNs4cz0tS8dvDXRldB3cOnboR7K4D8G025N502fpk1XugATCxcNfHK9aRPR9y40Lp6Dk8q00U1_6hl4ub9bzeZo8fzwOLtZoIJK3COeS6KqUiguCsYVtUza3BRFJWyWnpFUWGMFJ6aypJJGSVsyawR2KhOMY8HOwOW4dx_8-8HFXm_8IXTppKY5l4IRKrOUomOqCD7G4Cq9D83OhEETrL806lGjThr1t0atEsRGKKZwt3bhb_U_1CfJFnS2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957631274</pqid></control><display><type>article</type><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</creator><creatorcontrib>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</creatorcontrib><description>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//
t
-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm
−2
, a high volumetric power density of ~ 1720 W L
−1
, and an outstanding specific energy of ~ 470 W h kg
−1
at only 6 mA h cm
−2
.
Graphical Abstract
TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li//
t
-NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</description><identifier>ISSN: 2524-7921</identifier><identifier>EISSN: 2524-793X</identifier><identifier>DOI: 10.1007/s42765-023-00347-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Carbon black ; Cathodes ; Cellulose ; Charge transfer ; Chemistry and Materials Science ; Conductivity ; Cycles ; Electrode materials ; Electrodes ; Energy ; Energy storage ; Flaking ; Lithium batteries ; Local current ; Materials Engineering ; Materials Science ; Microstructure ; Nanoscale Science and Technology ; Polyhydroxyalkanoates ; Polymer Sciences ; Rechargeable batteries ; Renewable and Green Energy ; Research Article ; Scanning electron microscopy ; Slurries ; Specific energy ; Temperature ; Textile Engineering ; Thickness</subject><ispartof>Advanced fiber materials (Online), 2024-02, Vol.6 (1), p.214-228</ispartof><rights>Donghua University, Shanghai, China 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</cites><orcidid>0000-0002-9643-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42765-023-00347-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2957631274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Kang, Dong Hyuk</creatorcontrib><creatorcontrib>Park, Minhyuck</creatorcontrib><creatorcontrib>Lee, Jeonghun</creatorcontrib><creatorcontrib>Kim, Chan Yeol</creatorcontrib><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Lee, Youn-Ki</creatorcontrib><creatorcontrib>Hyun, Jong Chan</creatorcontrib><creatorcontrib>Ha, Son</creatorcontrib><creatorcontrib>Kwak, Jin Hwan</creatorcontrib><creatorcontrib>Yoon, Juhee</creatorcontrib><creatorcontrib>Kim, Hyemin</creatorcontrib><creatorcontrib>Kim, Hyun Soo</creatorcontrib><creatorcontrib>Kim, Do Hyun</creatorcontrib><creatorcontrib>Kim, Sangmin</creatorcontrib><creatorcontrib>Park, Ji Yong</creatorcontrib><creatorcontrib>Jang, Robin</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Lim, Hee-Dae</creatorcontrib><creatorcontrib>Cho, Se Youn</creatorcontrib><creatorcontrib>Jin, Hyoung-Joon</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Hwang, Yunil</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><title>Advanced fiber materials (Online)</title><addtitle>Adv. Fiber Mater</addtitle><description>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//
t
-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm
−2
, a high volumetric power density of ~ 1720 W L
−1
, and an outstanding specific energy of ~ 470 W h kg
−1
at only 6 mA h cm
−2
.
Graphical Abstract
TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li//
t
-NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</description><subject>Carbon black</subject><subject>Cathodes</subject><subject>Cellulose</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Flaking</subject><subject>Lithium batteries</subject><subject>Local current</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Slurries</subject><subject>Specific energy</subject><subject>Temperature</subject><subject>Textile Engineering</subject><subject>Thickness</subject><issn>2524-7921</issn><issn>2524-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWLR_wFPAczQfm489alErVOyhgngJyW62u-12U5MtuP_e6IrePM3AvM8M8wBwQfAVwVhex4xKwRGmDGHMMonUEZhQTjMkc_Z6_NtTcgqmMW4wxlQSTCmegLd5s67R0oXKh53pCgdXdVNs4cz0tS8dvDXRldB3cOnboR7K4D8G025N502fpk1XugATCxcNfHK9aRPR9y40Lp6Dk8q00U1_6hl4ub9bzeZo8fzwOLtZoIJK3COeS6KqUiguCsYVtUza3BRFJWyWnpFUWGMFJ6aypJJGSVsyawR2KhOMY8HOwOW4dx_8-8HFXm_8IXTppKY5l4IRKrOUomOqCD7G4Cq9D83OhEETrL806lGjThr1t0atEsRGKKZwt3bhb_U_1CfJFnS2</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kang, Dong Hyuk</creator><creator>Park, Minhyuck</creator><creator>Lee, Jeonghun</creator><creator>Kim, Chan Yeol</creator><creator>Park, Jimin</creator><creator>Lee, Youn-Ki</creator><creator>Hyun, Jong Chan</creator><creator>Ha, Son</creator><creator>Kwak, Jin Hwan</creator><creator>Yoon, Juhee</creator><creator>Kim, Hyemin</creator><creator>Kim, Hyun Soo</creator><creator>Kim, Do Hyun</creator><creator>Kim, Sangmin</creator><creator>Park, Ji Yong</creator><creator>Jang, Robin</creator><creator>Yang, Seung Jae</creator><creator>Lim, Hee-Dae</creator><creator>Cho, Se Youn</creator><creator>Jin, Hyoung-Joon</creator><creator>Lee, Seungjin</creator><creator>Hwang, Yunil</creator><creator>Yun, Young Soo</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9643-596X</orcidid></search><sort><creationdate>20240201</creationdate><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><author>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon black</topic><topic>Cathodes</topic><topic>Cellulose</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Flaking</topic><topic>Lithium batteries</topic><topic>Local current</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Slurries</topic><topic>Specific energy</topic><topic>Temperature</topic><topic>Textile Engineering</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dong Hyuk</creatorcontrib><creatorcontrib>Park, Minhyuck</creatorcontrib><creatorcontrib>Lee, Jeonghun</creatorcontrib><creatorcontrib>Kim, Chan Yeol</creatorcontrib><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Lee, Youn-Ki</creatorcontrib><creatorcontrib>Hyun, Jong Chan</creatorcontrib><creatorcontrib>Ha, Son</creatorcontrib><creatorcontrib>Kwak, Jin Hwan</creatorcontrib><creatorcontrib>Yoon, Juhee</creatorcontrib><creatorcontrib>Kim, Hyemin</creatorcontrib><creatorcontrib>Kim, Hyun Soo</creatorcontrib><creatorcontrib>Kim, Do Hyun</creatorcontrib><creatorcontrib>Kim, Sangmin</creatorcontrib><creatorcontrib>Park, Ji Yong</creatorcontrib><creatorcontrib>Jang, Robin</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Lim, Hee-Dae</creatorcontrib><creatorcontrib>Cho, Se Youn</creatorcontrib><creatorcontrib>Jin, Hyoung-Joon</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Hwang, Yunil</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Advanced fiber materials (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dong Hyuk</au><au>Park, Minhyuck</au><au>Lee, Jeonghun</au><au>Kim, Chan Yeol</au><au>Park, Jimin</au><au>Lee, Youn-Ki</au><au>Hyun, Jong Chan</au><au>Ha, Son</au><au>Kwak, Jin Hwan</au><au>Yoon, Juhee</au><au>Kim, Hyemin</au><au>Kim, Hyun Soo</au><au>Kim, Do Hyun</au><au>Kim, Sangmin</au><au>Park, Ji Yong</au><au>Jang, Robin</au><au>Yang, Seung Jae</au><au>Lim, Hee-Dae</au><au>Cho, Se Youn</au><au>Jin, Hyoung-Joon</au><au>Lee, Seungjin</au><au>Hwang, Yunil</au><au>Yun, Young Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</atitle><jtitle>Advanced fiber materials (Online)</jtitle><stitle>Adv. Fiber Mater</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>214</spage><epage>228</epage><pages>214-228</pages><issn>2524-7921</issn><eissn>2524-793X</eissn><abstract>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//
t
-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm
−2
, a high volumetric power density of ~ 1720 W L
−1
, and an outstanding specific energy of ~ 470 W h kg
−1
at only 6 mA h cm
−2
.
Graphical Abstract
TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li//
t
-NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42765-023-00347-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9643-596X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-7921 |
ispartof | Advanced fiber materials (Online), 2024-02, Vol.6 (1), p.214-228 |
issn | 2524-7921 2524-793X |
language | eng |
recordid | cdi_proquest_journals_2957631274 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Carbon black Cathodes Cellulose Charge transfer Chemistry and Materials Science Conductivity Cycles Electrode materials Electrodes Energy Energy storage Flaking Lithium batteries Local current Materials Engineering Materials Science Microstructure Nanoscale Science and Technology Polyhydroxyalkanoates Polymer Sciences Rechargeable batteries Renewable and Green Energy Research Article Scanning electron microscopy Slurries Specific energy Temperature Textile Engineering Thickness |
title | High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Thick%20Cathode%20Based%20on%20Polyhydroxyalkanoate%20Binder%20for%20Li%20Metal%20Batteries&rft.jtitle=Advanced%20fiber%20materials%20(Online)&rft.au=Kang,%20Dong%20Hyuk&rft.date=2024-02-01&rft.volume=6&rft.issue=1&rft.spage=214&rft.epage=228&rft.pages=214-228&rft.issn=2524-7921&rft.eissn=2524-793X&rft_id=info:doi/10.1007/s42765-023-00347-8&rft_dat=%3Cproquest_cross%3E2957631274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957631274&rft_id=info:pmid/&rfr_iscdi=true |