High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries

Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced fiber materials (Online) 2024-02, Vol.6 (1), p.214-228
Hauptverfasser: Kang, Dong Hyuk, Park, Minhyuck, Lee, Jeonghun, Kim, Chan Yeol, Park, Jimin, Lee, Youn-Ki, Hyun, Jong Chan, Ha, Son, Kwak, Jin Hwan, Yoon, Juhee, Kim, Hyemin, Kim, Hyun Soo, Kim, Do Hyun, Kim, Sangmin, Park, Ji Yong, Jang, Robin, Yang, Seung Jae, Lim, Hee-Dae, Cho, Se Youn, Jin, Hyoung-Joon, Lee, Seungjin, Hwang, Yunil, Yun, Young Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 214
container_title Advanced fiber materials (Online)
container_volume 6
creator Kang, Dong Hyuk
Park, Minhyuck
Lee, Jeonghun
Kim, Chan Yeol
Park, Jimin
Lee, Youn-Ki
Hyun, Jong Chan
Ha, Son
Kwak, Jin Hwan
Yoon, Juhee
Kim, Hyemin
Kim, Hyun Soo
Kim, Do Hyun
Kim, Sangmin
Park, Ji Yong
Jang, Robin
Yang, Seung Jae
Lim, Hee-Dae
Cho, Se Youn
Jin, Hyoung-Joon
Lee, Seungjin
Hwang, Yunil
Yun, Young Soo
description Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li// t -NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm −2 , a high volumetric power density of ~ 1720 W L −1 , and an outstanding specific energy of ~ 470 W h kg −1 at only 6 mA h cm −2 . Graphical Abstract TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li// t -NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.
doi_str_mv 10.1007/s42765-023-00347-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957631274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957631274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wFPAczQfm489alErVOyhgngJyW62u-12U5MtuP_e6IrePM3AvM8M8wBwQfAVwVhex4xKwRGmDGHMMonUEZhQTjMkc_Z6_NtTcgqmMW4wxlQSTCmegLd5s67R0oXKh53pCgdXdVNs4cz0tS8dvDXRldB3cOnboR7K4D8G025N502fpk1XugATCxcNfHK9aRPR9y40Lp6Dk8q00U1_6hl4ub9bzeZo8fzwOLtZoIJK3COeS6KqUiguCsYVtUza3BRFJWyWnpFUWGMFJ6aypJJGSVsyawR2KhOMY8HOwOW4dx_8-8HFXm_8IXTppKY5l4IRKrOUomOqCD7G4Cq9D83OhEETrL806lGjThr1t0atEsRGKKZwt3bhb_U_1CfJFnS2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957631274</pqid></control><display><type>article</type><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</creator><creatorcontrib>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</creatorcontrib><description>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li// t -NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm −2 , a high volumetric power density of ~ 1720 W L −1 , and an outstanding specific energy of ~ 470 W h kg −1 at only 6 mA h cm −2 . Graphical Abstract TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li// t -NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</description><identifier>ISSN: 2524-7921</identifier><identifier>EISSN: 2524-793X</identifier><identifier>DOI: 10.1007/s42765-023-00347-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Carbon black ; Cathodes ; Cellulose ; Charge transfer ; Chemistry and Materials Science ; Conductivity ; Cycles ; Electrode materials ; Electrodes ; Energy ; Energy storage ; Flaking ; Lithium batteries ; Local current ; Materials Engineering ; Materials Science ; Microstructure ; Nanoscale Science and Technology ; Polyhydroxyalkanoates ; Polymer Sciences ; Rechargeable batteries ; Renewable and Green Energy ; Research Article ; Scanning electron microscopy ; Slurries ; Specific energy ; Temperature ; Textile Engineering ; Thickness</subject><ispartof>Advanced fiber materials (Online), 2024-02, Vol.6 (1), p.214-228</ispartof><rights>Donghua University, Shanghai, China 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</cites><orcidid>0000-0002-9643-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42765-023-00347-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2957631274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Kang, Dong Hyuk</creatorcontrib><creatorcontrib>Park, Minhyuck</creatorcontrib><creatorcontrib>Lee, Jeonghun</creatorcontrib><creatorcontrib>Kim, Chan Yeol</creatorcontrib><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Lee, Youn-Ki</creatorcontrib><creatorcontrib>Hyun, Jong Chan</creatorcontrib><creatorcontrib>Ha, Son</creatorcontrib><creatorcontrib>Kwak, Jin Hwan</creatorcontrib><creatorcontrib>Yoon, Juhee</creatorcontrib><creatorcontrib>Kim, Hyemin</creatorcontrib><creatorcontrib>Kim, Hyun Soo</creatorcontrib><creatorcontrib>Kim, Do Hyun</creatorcontrib><creatorcontrib>Kim, Sangmin</creatorcontrib><creatorcontrib>Park, Ji Yong</creatorcontrib><creatorcontrib>Jang, Robin</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Lim, Hee-Dae</creatorcontrib><creatorcontrib>Cho, Se Youn</creatorcontrib><creatorcontrib>Jin, Hyoung-Joon</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Hwang, Yunil</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><title>Advanced fiber materials (Online)</title><addtitle>Adv. Fiber Mater</addtitle><description>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li// t -NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm −2 , a high volumetric power density of ~ 1720 W L −1 , and an outstanding specific energy of ~ 470 W h kg −1 at only 6 mA h cm −2 . Graphical Abstract TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li// t -NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</description><subject>Carbon black</subject><subject>Cathodes</subject><subject>Cellulose</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Flaking</subject><subject>Lithium batteries</subject><subject>Local current</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Slurries</subject><subject>Specific energy</subject><subject>Temperature</subject><subject>Textile Engineering</subject><subject>Thickness</subject><issn>2524-7921</issn><issn>2524-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWLR_wFPAczQfm489alErVOyhgngJyW62u-12U5MtuP_e6IrePM3AvM8M8wBwQfAVwVhex4xKwRGmDGHMMonUEZhQTjMkc_Z6_NtTcgqmMW4wxlQSTCmegLd5s67R0oXKh53pCgdXdVNs4cz0tS8dvDXRldB3cOnboR7K4D8G025N502fpk1XugATCxcNfHK9aRPR9y40Lp6Dk8q00U1_6hl4ub9bzeZo8fzwOLtZoIJK3COeS6KqUiguCsYVtUza3BRFJWyWnpFUWGMFJ6aypJJGSVsyawR2KhOMY8HOwOW4dx_8-8HFXm_8IXTppKY5l4IRKrOUomOqCD7G4Cq9D83OhEETrL806lGjThr1t0atEsRGKKZwt3bhb_U_1CfJFnS2</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kang, Dong Hyuk</creator><creator>Park, Minhyuck</creator><creator>Lee, Jeonghun</creator><creator>Kim, Chan Yeol</creator><creator>Park, Jimin</creator><creator>Lee, Youn-Ki</creator><creator>Hyun, Jong Chan</creator><creator>Ha, Son</creator><creator>Kwak, Jin Hwan</creator><creator>Yoon, Juhee</creator><creator>Kim, Hyemin</creator><creator>Kim, Hyun Soo</creator><creator>Kim, Do Hyun</creator><creator>Kim, Sangmin</creator><creator>Park, Ji Yong</creator><creator>Jang, Robin</creator><creator>Yang, Seung Jae</creator><creator>Lim, Hee-Dae</creator><creator>Cho, Se Youn</creator><creator>Jin, Hyoung-Joon</creator><creator>Lee, Seungjin</creator><creator>Hwang, Yunil</creator><creator>Yun, Young Soo</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9643-596X</orcidid></search><sort><creationdate>20240201</creationdate><title>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</title><author>Kang, Dong Hyuk ; Park, Minhyuck ; Lee, Jeonghun ; Kim, Chan Yeol ; Park, Jimin ; Lee, Youn-Ki ; Hyun, Jong Chan ; Ha, Son ; Kwak, Jin Hwan ; Yoon, Juhee ; Kim, Hyemin ; Kim, Hyun Soo ; Kim, Do Hyun ; Kim, Sangmin ; Park, Ji Yong ; Jang, Robin ; Yang, Seung Jae ; Lim, Hee-Dae ; Cho, Se Youn ; Jin, Hyoung-Joon ; Lee, Seungjin ; Hwang, Yunil ; Yun, Young Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-59718fd6856c3582b37b9accf6b4347726bab651afb1f7a87bd3ba60e84635063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon black</topic><topic>Cathodes</topic><topic>Cellulose</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Flaking</topic><topic>Lithium batteries</topic><topic>Local current</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Slurries</topic><topic>Specific energy</topic><topic>Temperature</topic><topic>Textile Engineering</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dong Hyuk</creatorcontrib><creatorcontrib>Park, Minhyuck</creatorcontrib><creatorcontrib>Lee, Jeonghun</creatorcontrib><creatorcontrib>Kim, Chan Yeol</creatorcontrib><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Lee, Youn-Ki</creatorcontrib><creatorcontrib>Hyun, Jong Chan</creatorcontrib><creatorcontrib>Ha, Son</creatorcontrib><creatorcontrib>Kwak, Jin Hwan</creatorcontrib><creatorcontrib>Yoon, Juhee</creatorcontrib><creatorcontrib>Kim, Hyemin</creatorcontrib><creatorcontrib>Kim, Hyun Soo</creatorcontrib><creatorcontrib>Kim, Do Hyun</creatorcontrib><creatorcontrib>Kim, Sangmin</creatorcontrib><creatorcontrib>Park, Ji Yong</creatorcontrib><creatorcontrib>Jang, Robin</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Lim, Hee-Dae</creatorcontrib><creatorcontrib>Cho, Se Youn</creatorcontrib><creatorcontrib>Jin, Hyoung-Joon</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Hwang, Yunil</creatorcontrib><creatorcontrib>Yun, Young Soo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Advanced fiber materials (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dong Hyuk</au><au>Park, Minhyuck</au><au>Lee, Jeonghun</au><au>Kim, Chan Yeol</au><au>Park, Jimin</au><au>Lee, Youn-Ki</au><au>Hyun, Jong Chan</au><au>Ha, Son</au><au>Kwak, Jin Hwan</au><au>Yoon, Juhee</au><au>Kim, Hyemin</au><au>Kim, Hyun Soo</au><au>Kim, Do Hyun</au><au>Kim, Sangmin</au><au>Park, Ji Yong</au><au>Jang, Robin</au><au>Yang, Seung Jae</au><au>Lim, Hee-Dae</au><au>Cho, Se Youn</au><au>Jin, Hyoung-Joon</au><au>Lee, Seungjin</au><au>Hwang, Yunil</au><au>Yun, Young Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries</atitle><jtitle>Advanced fiber materials (Online)</jtitle><stitle>Adv. Fiber Mater</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>214</spage><epage>228</epage><pages>214-228</pages><issn>2524-7921</issn><eissn>2524-793X</eissn><abstract>Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li// t -NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm −2 , a high volumetric power density of ~ 1720 W L −1 , and an outstanding specific energy of ~ 470 W h kg −1 at only 6 mA h cm −2 . Graphical Abstract TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li// t -NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42765-023-00347-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9643-596X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-7921
ispartof Advanced fiber materials (Online), 2024-02, Vol.6 (1), p.214-228
issn 2524-7921
2524-793X
language eng
recordid cdi_proquest_journals_2957631274
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Carbon black
Cathodes
Cellulose
Charge transfer
Chemistry and Materials Science
Conductivity
Cycles
Electrode materials
Electrodes
Energy
Energy storage
Flaking
Lithium batteries
Local current
Materials Engineering
Materials Science
Microstructure
Nanoscale Science and Technology
Polyhydroxyalkanoates
Polymer Sciences
Rechargeable batteries
Renewable and Green Energy
Research Article
Scanning electron microscopy
Slurries
Specific energy
Temperature
Textile Engineering
Thickness
title High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Thick%20Cathode%20Based%20on%20Polyhydroxyalkanoate%20Binder%20for%20Li%20Metal%20Batteries&rft.jtitle=Advanced%20fiber%20materials%20(Online)&rft.au=Kang,%20Dong%20Hyuk&rft.date=2024-02-01&rft.volume=6&rft.issue=1&rft.spage=214&rft.epage=228&rft.pages=214-228&rft.issn=2524-7921&rft.eissn=2524-793X&rft_id=info:doi/10.1007/s42765-023-00347-8&rft_dat=%3Cproquest_cross%3E2957631274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957631274&rft_id=info:pmid/&rfr_iscdi=true