Global Demand and Supply Sentiment: Evidence From Earnings Calls

This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxford bulletin of economics and statistics 2024-04, Vol.86 (2), p.314-334
Hauptverfasser: Ulrich Ruch, Franz, Taskin, Temel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 314
container_title Oxford bulletin of economics and statistics
container_volume 86
creator Ulrich Ruch, Franz
Taskin, Temel
description This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.
doi_str_mv 10.1111/obes.12587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957616066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957616066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A16ebTk1q3VSj0UAVvIbtJZctusiat0n9v1hW8OTAzh3l4Bl4ALjGa4FQ3vrRxgqdU8CMwwoSJDCFBjsEI5YhmEhF5Cs5i3CKEEiVH4G7R-FI38NG22hnY93rfdc0Brq3b1W0at7D4rI11lYXz4FtY6OBq9x7hTDdNPAcnG91Ee_G7x-B1XrzMnrLlavE8u19mVU5znlHODOdsSrGxmgjCeUktIZoTRAyhiOoS6_6Wa6yNEazaSMLznJWEWFlW-RhcDd4u-I-9jTu19fvg0ks1lcmOGWIsUdcDVQUfY7Ab1YW61eGgMFJ9QqpPSP0klGA4wLbyro5_qJBIUkHlW0LwgHzVjT38I1Orh2I9aL8B_DVxfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957616066</pqid></control><display><type>article</type><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ulrich Ruch, Franz ; Taskin, Temel</creator><creatorcontrib>Ulrich Ruch, Franz ; Taskin, Temel</creatorcontrib><description>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</description><identifier>ISSN: 0305-9049</identifier><identifier>EISSN: 1468-0084</identifier><identifier>DOI: 10.1111/obes.12587</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>2008-2021 ; Bayesian analysis ; Branchenentwicklung ; Business services ; Coronavirus ; COVID-19 ; Department stores ; Earnings ; Gesamtwirtschaftliche Nachfrage ; Gesamtwirtschaftliches Angebot ; Great Recession ; Pandemics ; Recessions ; Retail stores ; Supply &amp; demand ; USA ; Weltwirtschaftskrise</subject><ispartof>Oxford bulletin of economics and statistics, 2024-04, Vol.86 (2), p.314-334</ispartof><rights>2023 Oxford University and John Wiley &amp; Sons Ltd.</rights><rights>2024 Oxford University and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fobes.12587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fobes.12587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ulrich Ruch, Franz</creatorcontrib><creatorcontrib>Taskin, Temel</creatorcontrib><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><title>Oxford bulletin of economics and statistics</title><description>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</description><subject>2008-2021</subject><subject>Bayesian analysis</subject><subject>Branchenentwicklung</subject><subject>Business services</subject><subject>Coronavirus</subject><subject>COVID-19</subject><subject>Department stores</subject><subject>Earnings</subject><subject>Gesamtwirtschaftliche Nachfrage</subject><subject>Gesamtwirtschaftliches Angebot</subject><subject>Great Recession</subject><subject>Pandemics</subject><subject>Recessions</subject><subject>Retail stores</subject><subject>Supply &amp; demand</subject><subject>USA</subject><subject>Weltwirtschaftskrise</subject><issn>0305-9049</issn><issn>1468-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A16ebTk1q3VSj0UAVvIbtJZctusiat0n9v1hW8OTAzh3l4Bl4ALjGa4FQ3vrRxgqdU8CMwwoSJDCFBjsEI5YhmEhF5Cs5i3CKEEiVH4G7R-FI38NG22hnY93rfdc0Brq3b1W0at7D4rI11lYXz4FtY6OBq9x7hTDdNPAcnG91Ee_G7x-B1XrzMnrLlavE8u19mVU5znlHODOdsSrGxmgjCeUktIZoTRAyhiOoS6_6Wa6yNEazaSMLznJWEWFlW-RhcDd4u-I-9jTu19fvg0ks1lcmOGWIsUdcDVQUfY7Ab1YW61eGgMFJ9QqpPSP0klGA4wLbyro5_qJBIUkHlW0LwgHzVjT38I1Orh2I9aL8B_DVxfw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Ulrich Ruch, Franz</creator><creator>Taskin, Temel</creator><general>Blackwell Publishing Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202404</creationdate><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><author>Ulrich Ruch, Franz ; Taskin, Temel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2008-2021</topic><topic>Bayesian analysis</topic><topic>Branchenentwicklung</topic><topic>Business services</topic><topic>Coronavirus</topic><topic>COVID-19</topic><topic>Department stores</topic><topic>Earnings</topic><topic>Gesamtwirtschaftliche Nachfrage</topic><topic>Gesamtwirtschaftliches Angebot</topic><topic>Great Recession</topic><topic>Pandemics</topic><topic>Recessions</topic><topic>Retail stores</topic><topic>Supply &amp; demand</topic><topic>USA</topic><topic>Weltwirtschaftskrise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulrich Ruch, Franz</creatorcontrib><creatorcontrib>Taskin, Temel</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Oxford bulletin of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulrich Ruch, Franz</au><au>Taskin, Temel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Demand and Supply Sentiment: Evidence From Earnings Calls</atitle><jtitle>Oxford bulletin of economics and statistics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>86</volume><issue>2</issue><spage>314</spage><epage>334</epage><pages>314-334</pages><issn>0305-9049</issn><eissn>1468-0084</eissn><abstract>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/obes.12587</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-9049
ispartof Oxford bulletin of economics and statistics, 2024-04, Vol.86 (2), p.314-334
issn 0305-9049
1468-0084
language eng
recordid cdi_proquest_journals_2957616066
source Wiley Online Library Journals Frontfile Complete
subjects 2008-2021
Bayesian analysis
Branchenentwicklung
Business services
Coronavirus
COVID-19
Department stores
Earnings
Gesamtwirtschaftliche Nachfrage
Gesamtwirtschaftliches Angebot
Great Recession
Pandemics
Recessions
Retail stores
Supply & demand
USA
Weltwirtschaftskrise
title Global Demand and Supply Sentiment: Evidence From Earnings Calls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Demand%20and%20Supply%20Sentiment:%20Evidence%20From%20Earnings%20Calls&rft.jtitle=Oxford%20bulletin%20of%20economics%20and%20statistics&rft.au=Ulrich%20Ruch,%20Franz&rft.date=2024-04&rft.volume=86&rft.issue=2&rft.spage=314&rft.epage=334&rft.pages=314-334&rft.issn=0305-9049&rft.eissn=1468-0084&rft_id=info:doi/10.1111/obes.12587&rft_dat=%3Cproquest_cross%3E2957616066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957616066&rft_id=info:pmid/&rfr_iscdi=true