Global Demand and Supply Sentiment: Evidence From Earnings Calls
This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborat...
Gespeichert in:
Veröffentlicht in: | Oxford bulletin of economics and statistics 2024-04, Vol.86 (2), p.314-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 2 |
container_start_page | 314 |
container_title | Oxford bulletin of economics and statistics |
container_volume | 86 |
creator | Ulrich Ruch, Franz Taskin, Temel |
description | This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic. |
doi_str_mv | 10.1111/obes.12587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957616066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957616066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A16ebTk1q3VSj0UAVvIbtJZctusiat0n9v1hW8OTAzh3l4Bl4ALjGa4FQ3vrRxgqdU8CMwwoSJDCFBjsEI5YhmEhF5Cs5i3CKEEiVH4G7R-FI38NG22hnY93rfdc0Brq3b1W0at7D4rI11lYXz4FtY6OBq9x7hTDdNPAcnG91Ee_G7x-B1XrzMnrLlavE8u19mVU5znlHODOdsSrGxmgjCeUktIZoTRAyhiOoS6_6Wa6yNEazaSMLznJWEWFlW-RhcDd4u-I-9jTu19fvg0ks1lcmOGWIsUdcDVQUfY7Ab1YW61eGgMFJ9QqpPSP0klGA4wLbyro5_qJBIUkHlW0LwgHzVjT38I1Orh2I9aL8B_DVxfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957616066</pqid></control><display><type>article</type><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ulrich Ruch, Franz ; Taskin, Temel</creator><creatorcontrib>Ulrich Ruch, Franz ; Taskin, Temel</creatorcontrib><description>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</description><identifier>ISSN: 0305-9049</identifier><identifier>EISSN: 1468-0084</identifier><identifier>DOI: 10.1111/obes.12587</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>2008-2021 ; Bayesian analysis ; Branchenentwicklung ; Business services ; Coronavirus ; COVID-19 ; Department stores ; Earnings ; Gesamtwirtschaftliche Nachfrage ; Gesamtwirtschaftliches Angebot ; Great Recession ; Pandemics ; Recessions ; Retail stores ; Supply & demand ; USA ; Weltwirtschaftskrise</subject><ispartof>Oxford bulletin of economics and statistics, 2024-04, Vol.86 (2), p.314-334</ispartof><rights>2023 Oxford University and John Wiley & Sons Ltd.</rights><rights>2024 Oxford University and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fobes.12587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fobes.12587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ulrich Ruch, Franz</creatorcontrib><creatorcontrib>Taskin, Temel</creatorcontrib><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><title>Oxford bulletin of economics and statistics</title><description>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</description><subject>2008-2021</subject><subject>Bayesian analysis</subject><subject>Branchenentwicklung</subject><subject>Business services</subject><subject>Coronavirus</subject><subject>COVID-19</subject><subject>Department stores</subject><subject>Earnings</subject><subject>Gesamtwirtschaftliche Nachfrage</subject><subject>Gesamtwirtschaftliches Angebot</subject><subject>Great Recession</subject><subject>Pandemics</subject><subject>Recessions</subject><subject>Retail stores</subject><subject>Supply & demand</subject><subject>USA</subject><subject>Weltwirtschaftskrise</subject><issn>0305-9049</issn><issn>1468-0084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf0HAm7A16ebTk1q3VSj0UAVvIbtJZctusiat0n9v1hW8OTAzh3l4Bl4ALjGa4FQ3vrRxgqdU8CMwwoSJDCFBjsEI5YhmEhF5Cs5i3CKEEiVH4G7R-FI38NG22hnY93rfdc0Brq3b1W0at7D4rI11lYXz4FtY6OBq9x7hTDdNPAcnG91Ee_G7x-B1XrzMnrLlavE8u19mVU5znlHODOdsSrGxmgjCeUktIZoTRAyhiOoS6_6Wa6yNEazaSMLznJWEWFlW-RhcDd4u-I-9jTu19fvg0ks1lcmOGWIsUdcDVQUfY7Ab1YW61eGgMFJ9QqpPSP0klGA4wLbyro5_qJBIUkHlW0LwgHzVjT38I1Orh2I9aL8B_DVxfw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Ulrich Ruch, Franz</creator><creator>Taskin, Temel</creator><general>Blackwell Publishing Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202404</creationdate><title>Global Demand and Supply Sentiment: Evidence From Earnings Calls</title><author>Ulrich Ruch, Franz ; Taskin, Temel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-576d776251dea48477b5e44a7404d4505ab1a1dea3a1add86cf947336b44e9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2008-2021</topic><topic>Bayesian analysis</topic><topic>Branchenentwicklung</topic><topic>Business services</topic><topic>Coronavirus</topic><topic>COVID-19</topic><topic>Department stores</topic><topic>Earnings</topic><topic>Gesamtwirtschaftliche Nachfrage</topic><topic>Gesamtwirtschaftliches Angebot</topic><topic>Great Recession</topic><topic>Pandemics</topic><topic>Recessions</topic><topic>Retail stores</topic><topic>Supply & demand</topic><topic>USA</topic><topic>Weltwirtschaftskrise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulrich Ruch, Franz</creatorcontrib><creatorcontrib>Taskin, Temel</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Oxford bulletin of economics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulrich Ruch, Franz</au><au>Taskin, Temel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Demand and Supply Sentiment: Evidence From Earnings Calls</atitle><jtitle>Oxford bulletin of economics and statistics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>86</volume><issue>2</issue><spage>314</spage><epage>334</epage><pages>314-334</pages><issn>0305-9049</issn><eissn>1468-0084</eissn><abstract>This paper quantifies global demand and supply conditions and compares two major global recessions: the 2009 Great Recession and the COVID‐19 pandemic. First, we compute demand and supply sentiment by applying Natural Language Processing techniques on earnings call transcripts. Second, we corroborate our sentiment measure by identifying demand and supply shocks using a structural Bayesian vector autoregression model. The results highlight sharp contrast in the size of supply and demand conditions over time and across sectors. While the Great Recession was characterized by weak demand, COVID‐19 caused sizable disruptions to both demand and supply, with varying relative importance across major sectors. Furthermore, certain sub‐sectors, such as professional and business services, internet retail, and grocery/department stores, fared better than others during the pandemic.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/obes.12587</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-9049 |
ispartof | Oxford bulletin of economics and statistics, 2024-04, Vol.86 (2), p.314-334 |
issn | 0305-9049 1468-0084 |
language | eng |
recordid | cdi_proquest_journals_2957616066 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2008-2021 Bayesian analysis Branchenentwicklung Business services Coronavirus COVID-19 Department stores Earnings Gesamtwirtschaftliche Nachfrage Gesamtwirtschaftliches Angebot Great Recession Pandemics Recessions Retail stores Supply & demand USA Weltwirtschaftskrise |
title | Global Demand and Supply Sentiment: Evidence From Earnings Calls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Demand%20and%20Supply%20Sentiment:%20Evidence%20From%20Earnings%20Calls&rft.jtitle=Oxford%20bulletin%20of%20economics%20and%20statistics&rft.au=Ulrich%20Ruch,%20Franz&rft.date=2024-04&rft.volume=86&rft.issue=2&rft.spage=314&rft.epage=334&rft.pages=314-334&rft.issn=0305-9049&rft.eissn=1468-0084&rft_id=info:doi/10.1111/obes.12587&rft_dat=%3Cproquest_cross%3E2957616066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957616066&rft_id=info:pmid/&rfr_iscdi=true |