On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites
Mixed halide perovskites are emerging as promising candidates for wide‐bandgap components in tandem solar cells and color‐tunable light‐emitting diodes. Yet, halide mixing poses a fundamental question of whether the inhomogeneous halide distribution impacts the intrinsic electronic disorder in these...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2024-03, Vol.12 (8), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Diez‐Cabanes, Valentin Giannini, Samuele Beljonne, David Quarti, Claudio |
description | Mixed halide perovskites are emerging as promising candidates for wide‐bandgap components in tandem solar cells and color‐tunable light‐emitting diodes. Yet, halide mixing poses a fundamental question of whether the inhomogeneous halide distribution impacts the intrinsic electronic disorder in these materials. To address this point, density functional theory (DFT)‐based molecular dynamics (MD) simulations are performed for pure and mixed halide perovskites, accounting for disorder stemming from inhomogeneous chemical composition associated with the halide component and from finite temperature effects. For pure halide perovskites, finite‐temperature band gap fluctuations from the MD simulations are in good agreement with the broadening measured using photoluminescence. Furthermore, these calculations confirm the natively modest inhomogeneous disorder in the electronic structure of these materials. Most notably, such a low degree of electronic disorder is preserved in models mimicking finely intermixed Br/I solid‐state solutions. In contrast, models featuring halide segregation show comparably wider band gap fluctuations, with a sizable contribution from inhomogeneous (static) broadening, which is associated, at least in part, with structural distortions stemming from lattice mismatch.
Emission linewidth and absorption onset sharpness (Urbach tail) entail information on the electronic disorder in semiconductors. This is discussed for mixed halide perovskites, with halide mixing representing a successful strategy for color‐tunability but also an intrinsic source of disorder. Density functional theory‐based molecular dynamics simulations unveil the impact of halide inhomogeneity for models mimicking both finely dispersed iodine/bromine solutions and segregated phases. |
doi_str_mv | 10.1002/adom.202301105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957583015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957583015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3265-90f83bc8136f5739ada135358c28d39991ebe87c34dc8c1714f50e83eacd3b7e3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiQS5em7iebEflG2PBFBMIOtBz01pZ7EIW2wXlX9vCUa9eZqZzPvMx4vQNSV9Sgi7NS5s-4wwTigl4gx1GFWioKSk53_yS9RLaU0IyQVXg7KDplWD2xfAVfQr3-BQ42kDcQWtt3jiU4gOIs6Nhf8Eh2dm4x0kPAfj8CPE8J5efQvpCl3UZpOg9x276Plu-jSeFfPq_mE8mheWs6EoFKklX1pJ-bAW-QDjDOWCC2mZdFwpRWEJsrR84Ky0tKSDWhCQHIx1fFkC76Kb09xdDG97SK1eh31s8krNlCiFzO-LrOqfVDaGlCLUehf91sSDpkQf3dJHt_SPWxlQJ-DDb-Dwj1qPJtXil_0CTqFsRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957583015</pqid></control><display><type>article</type><title>On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites</title><source>Access via Wiley Online Library</source><creator>Diez‐Cabanes, Valentin ; Giannini, Samuele ; Beljonne, David ; Quarti, Claudio</creator><creatorcontrib>Diez‐Cabanes, Valentin ; Giannini, Samuele ; Beljonne, David ; Quarti, Claudio</creatorcontrib><description>Mixed halide perovskites are emerging as promising candidates for wide‐bandgap components in tandem solar cells and color‐tunable light‐emitting diodes. Yet, halide mixing poses a fundamental question of whether the inhomogeneous halide distribution impacts the intrinsic electronic disorder in these materials. To address this point, density functional theory (DFT)‐based molecular dynamics (MD) simulations are performed for pure and mixed halide perovskites, accounting for disorder stemming from inhomogeneous chemical composition associated with the halide component and from finite temperature effects. For pure halide perovskites, finite‐temperature band gap fluctuations from the MD simulations are in good agreement with the broadening measured using photoluminescence. Furthermore, these calculations confirm the natively modest inhomogeneous disorder in the electronic structure of these materials. Most notably, such a low degree of electronic disorder is preserved in models mimicking finely intermixed Br/I solid‐state solutions. In contrast, models featuring halide segregation show comparably wider band gap fluctuations, with a sizable contribution from inhomogeneous (static) broadening, which is associated, at least in part, with structural distortions stemming from lattice mismatch.
Emission linewidth and absorption onset sharpness (Urbach tail) entail information on the electronic disorder in semiconductors. This is discussed for mixed halide perovskites, with halide mixing representing a successful strategy for color‐tunability but also an intrinsic source of disorder. Density functional theory‐based molecular dynamics simulations unveil the impact of halide inhomogeneity for models mimicking both finely dispersed iodine/bromine solutions and segregated phases.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202301105</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical composition ; Density functional theory ; DFT (density functional theory) calculations ; Electronic structure ; Energy gap ; halide mixing, halide perovskites ; Halides ; Light emitting diodes ; Molecular dynamics ; Perovskites ; Photoluminescence ; Photovoltaic cells ; Solar cells ; Temperature effects</subject><ispartof>Advanced optical materials, 2024-03, Vol.12 (8), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3265-90f83bc8136f5739ada135358c28d39991ebe87c34dc8c1714f50e83eacd3b7e3</cites><orcidid>0000-0002-5488-1216 ; 0000-0002-1094-3921 ; 0000-0001-5082-9990 ; 0000-0002-6234-2749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202301105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202301105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Diez‐Cabanes, Valentin</creatorcontrib><creatorcontrib>Giannini, Samuele</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Quarti, Claudio</creatorcontrib><title>On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites</title><title>Advanced optical materials</title><description>Mixed halide perovskites are emerging as promising candidates for wide‐bandgap components in tandem solar cells and color‐tunable light‐emitting diodes. Yet, halide mixing poses a fundamental question of whether the inhomogeneous halide distribution impacts the intrinsic electronic disorder in these materials. To address this point, density functional theory (DFT)‐based molecular dynamics (MD) simulations are performed for pure and mixed halide perovskites, accounting for disorder stemming from inhomogeneous chemical composition associated with the halide component and from finite temperature effects. For pure halide perovskites, finite‐temperature band gap fluctuations from the MD simulations are in good agreement with the broadening measured using photoluminescence. Furthermore, these calculations confirm the natively modest inhomogeneous disorder in the electronic structure of these materials. Most notably, such a low degree of electronic disorder is preserved in models mimicking finely intermixed Br/I solid‐state solutions. In contrast, models featuring halide segregation show comparably wider band gap fluctuations, with a sizable contribution from inhomogeneous (static) broadening, which is associated, at least in part, with structural distortions stemming from lattice mismatch.
Emission linewidth and absorption onset sharpness (Urbach tail) entail information on the electronic disorder in semiconductors. This is discussed for mixed halide perovskites, with halide mixing representing a successful strategy for color‐tunability but also an intrinsic source of disorder. Density functional theory‐based molecular dynamics simulations unveil the impact of halide inhomogeneity for models mimicking both finely dispersed iodine/bromine solutions and segregated phases.</description><subject>Chemical composition</subject><subject>Density functional theory</subject><subject>DFT (density functional theory) calculations</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>halide mixing, halide perovskites</subject><subject>Halides</subject><subject>Light emitting diodes</subject><subject>Molecular dynamics</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Temperature effects</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiQS5em7iebEflG2PBFBMIOtBz01pZ7EIW2wXlX9vCUa9eZqZzPvMx4vQNSV9Sgi7NS5s-4wwTigl4gx1GFWioKSk53_yS9RLaU0IyQVXg7KDplWD2xfAVfQr3-BQ42kDcQWtt3jiU4gOIs6Nhf8Eh2dm4x0kPAfj8CPE8J5efQvpCl3UZpOg9x276Plu-jSeFfPq_mE8mheWs6EoFKklX1pJ-bAW-QDjDOWCC2mZdFwpRWEJsrR84Ky0tKSDWhCQHIx1fFkC76Kb09xdDG97SK1eh31s8krNlCiFzO-LrOqfVDaGlCLUehf91sSDpkQf3dJHt_SPWxlQJ-DDb-Dwj1qPJtXil_0CTqFsRQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Diez‐Cabanes, Valentin</creator><creator>Giannini, Samuele</creator><creator>Beljonne, David</creator><creator>Quarti, Claudio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5488-1216</orcidid><orcidid>https://orcid.org/0000-0002-1094-3921</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000-0002-6234-2749</orcidid></search><sort><creationdate>20240301</creationdate><title>On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites</title><author>Diez‐Cabanes, Valentin ; Giannini, Samuele ; Beljonne, David ; Quarti, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3265-90f83bc8136f5739ada135358c28d39991ebe87c34dc8c1714f50e83eacd3b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical composition</topic><topic>Density functional theory</topic><topic>DFT (density functional theory) calculations</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>halide mixing, halide perovskites</topic><topic>Halides</topic><topic>Light emitting diodes</topic><topic>Molecular dynamics</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Temperature effects</topic><toplevel>online_resources</toplevel><creatorcontrib>Diez‐Cabanes, Valentin</creatorcontrib><creatorcontrib>Giannini, Samuele</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Quarti, Claudio</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diez‐Cabanes, Valentin</au><au>Giannini, Samuele</au><au>Beljonne, David</au><au>Quarti, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites</atitle><jtitle>Advanced optical materials</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>8</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Mixed halide perovskites are emerging as promising candidates for wide‐bandgap components in tandem solar cells and color‐tunable light‐emitting diodes. Yet, halide mixing poses a fundamental question of whether the inhomogeneous halide distribution impacts the intrinsic electronic disorder in these materials. To address this point, density functional theory (DFT)‐based molecular dynamics (MD) simulations are performed for pure and mixed halide perovskites, accounting for disorder stemming from inhomogeneous chemical composition associated with the halide component and from finite temperature effects. For pure halide perovskites, finite‐temperature band gap fluctuations from the MD simulations are in good agreement with the broadening measured using photoluminescence. Furthermore, these calculations confirm the natively modest inhomogeneous disorder in the electronic structure of these materials. Most notably, such a low degree of electronic disorder is preserved in models mimicking finely intermixed Br/I solid‐state solutions. In contrast, models featuring halide segregation show comparably wider band gap fluctuations, with a sizable contribution from inhomogeneous (static) broadening, which is associated, at least in part, with structural distortions stemming from lattice mismatch.
Emission linewidth and absorption onset sharpness (Urbach tail) entail information on the electronic disorder in semiconductors. This is discussed for mixed halide perovskites, with halide mixing representing a successful strategy for color‐tunability but also an intrinsic source of disorder. Density functional theory‐based molecular dynamics simulations unveil the impact of halide inhomogeneity for models mimicking both finely dispersed iodine/bromine solutions and segregated phases.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202301105</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5488-1216</orcidid><orcidid>https://orcid.org/0000-0002-1094-3921</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000-0002-6234-2749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-03, Vol.12 (8), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2957583015 |
source | Access via Wiley Online Library |
subjects | Chemical composition Density functional theory DFT (density functional theory) calculations Electronic structure Energy gap halide mixing, halide perovskites Halides Light emitting diodes Molecular dynamics Perovskites Photoluminescence Photovoltaic cells Solar cells Temperature effects |
title | On the Origin of Energetic Disorder in Mixed Halides Lead Perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Origin%20of%20Energetic%20Disorder%20in%20Mixed%20Halides%20Lead%20Perovskites&rft.jtitle=Advanced%20optical%20materials&rft.au=Diez%E2%80%90Cabanes,%20Valentin&rft.date=2024-03-01&rft.volume=12&rft.issue=8&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202301105&rft_dat=%3Cproquest_cross%3E2957583015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957583015&rft_id=info:pmid/&rfr_iscdi=true |