Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST
Magnetic bright points on the solar photosphere mark the footpoints of kilogauss magnetic flux tubes extending toward the corona. Convective buffeting of these tubes is believed to excite magnetohydrodynamic waves, which can propagate to the corona and deposit heat there. Measuring wave excitation v...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-03, Vol.964 (1), p.50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | The Astrophysical journal |
container_volume | 964 |
creator | Van Kooten, Samuel J. Cranmer, Steven R. |
description | Magnetic bright points on the solar photosphere mark the footpoints of kilogauss magnetic flux tubes extending toward the corona. Convective buffeting of these tubes is believed to excite magnetohydrodynamic waves, which can propagate to the corona and deposit heat there. Measuring wave excitation via bright point motion can thus constrain coronal and heliospheric models, and this has been done extensively with centroid tracking, which can estimate kink-mode wave excitation. DKIST is the first telescope to provide well-resolved observations of bright points, allowing shape and size measurements to probe the excitation of other wave modes that have been difficult, if not impossible, to study to date. In this work, we demonstrate a method of automatic bright point tracking that robustly identifies the shapes of bright points, and we develop a technique for interpreting measured bright point shape changes as the driving of a range of thin-tube wave modes. We demonstrate these techniques on a MURaM simulation of DKIST-like resolution. These initial results suggest that modes other than the long-studied kink mode could increase the total available energy budget for wave heating by 50%. Pending observational verification as well as modeling of the propagation and dissipation of these additional wave modes, this could represent a significant increase in the potency of wave-turbulence heating models. |
doi_str_mv | 10.3847/1538-4357/ad2071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957273240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af44bfc2d8224a94b95baec1b050892c</doaj_id><sourcerecordid>2957273240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-dbbde2b6bf2fdc9a970247060b7d39cf70706e5f17ee1957c83e5e0b7a4f3e9c3</originalsourceid><addsrcrecordid>eNp1kUFPHDEMhSMEEgvlzjESV6Zkksxm0hvdtrAqEkgLoqdGTsbZzWo72SahUv89M52KnnqybH_v2bIJOa_Ze9FKdVU3oq2kaNQVdJyp-oDM3kqHZMYYk9VcqG_H5CTn7ZhyrWfk-1MO_Zp-TGG9KfQhhr7Q1Qb2mGmJdBH7XBKEnj7DL6S3CGWko6dlg3QVd5AGJsUePtCHhF1wJQwS6mOin74uV4_vyJGHXcazv_GUPH35_Li4re7ub5aL67vKyXpeqs7aDrmdW8995zRoxbhUbM6s6oR2XrEhwcbXCrHWjXKtwAaHLkgvUDtxSpaTbxdha_Yp_ID020QI5k8hprWBVILboQEvpfWOdy3nErS0urGArrasYa3mo9fF5LVP8ecL5mK28SX1w_qGD7O5ElyygWIT5VLMOaF_m1ozM37EjOc34_nN9JFBcjlJQtz_8_wv_gpgE4tm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957273240</pqid></control><display><type>article</type><title>Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Van Kooten, Samuel J. ; Cranmer, Steven R.</creator><creatorcontrib>Van Kooten, Samuel J. ; Cranmer, Steven R.</creatorcontrib><description>Magnetic bright points on the solar photosphere mark the footpoints of kilogauss magnetic flux tubes extending toward the corona. Convective buffeting of these tubes is believed to excite magnetohydrodynamic waves, which can propagate to the corona and deposit heat there. Measuring wave excitation via bright point motion can thus constrain coronal and heliospheric models, and this has been done extensively with centroid tracking, which can estimate kink-mode wave excitation. DKIST is the first telescope to provide well-resolved observations of bright points, allowing shape and size measurements to probe the excitation of other wave modes that have been difficult, if not impossible, to study to date. In this work, we demonstrate a method of automatic bright point tracking that robustly identifies the shapes of bright points, and we develop a technique for interpreting measured bright point shape changes as the driving of a range of thin-tube wave modes. We demonstrate these techniques on a MURaM simulation of DKIST-like resolution. These initial results suggest that modes other than the long-studied kink mode could increase the total available energy budget for wave heating by 50%. Pending observational verification as well as modeling of the propagation and dissipation of these additional wave modes, this could represent a significant increase in the potency of wave-turbulence heating models.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad2071</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alfven waves ; Alfvén waves ; Buffeting ; Centroids ; Corona ; Energy budget ; Heating ; Heliospheric models ; Magnetic flux ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Photosphere ; Solar corona ; Solar coronal heating ; Solar magnetic bright points ; Solar photosphere ; Tracking ; Tubes ; Wave excitation</subject><ispartof>The Astrophysical journal, 2024-03, Vol.964 (1), p.50</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-dbbde2b6bf2fdc9a970247060b7d39cf70706e5f17ee1957c83e5e0b7a4f3e9c3</citedby><cites>FETCH-LOGICAL-c416t-dbbde2b6bf2fdc9a970247060b7d39cf70706e5f17ee1957c83e5e0b7a4f3e9c3</cites><orcidid>0000-0002-3699-3134 ; 0000-0002-4472-8517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad2071/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>Van Kooten, Samuel J.</creatorcontrib><creatorcontrib>Cranmer, Steven R.</creatorcontrib><title>Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Magnetic bright points on the solar photosphere mark the footpoints of kilogauss magnetic flux tubes extending toward the corona. Convective buffeting of these tubes is believed to excite magnetohydrodynamic waves, which can propagate to the corona and deposit heat there. Measuring wave excitation via bright point motion can thus constrain coronal and heliospheric models, and this has been done extensively with centroid tracking, which can estimate kink-mode wave excitation. DKIST is the first telescope to provide well-resolved observations of bright points, allowing shape and size measurements to probe the excitation of other wave modes that have been difficult, if not impossible, to study to date. In this work, we demonstrate a method of automatic bright point tracking that robustly identifies the shapes of bright points, and we develop a technique for interpreting measured bright point shape changes as the driving of a range of thin-tube wave modes. We demonstrate these techniques on a MURaM simulation of DKIST-like resolution. These initial results suggest that modes other than the long-studied kink mode could increase the total available energy budget for wave heating by 50%. Pending observational verification as well as modeling of the propagation and dissipation of these additional wave modes, this could represent a significant increase in the potency of wave-turbulence heating models.</description><subject>Alfven waves</subject><subject>Alfvén waves</subject><subject>Buffeting</subject><subject>Centroids</subject><subject>Corona</subject><subject>Energy budget</subject><subject>Heating</subject><subject>Heliospheric models</subject><subject>Magnetic flux</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Photosphere</subject><subject>Solar corona</subject><subject>Solar coronal heating</subject><subject>Solar magnetic bright points</subject><subject>Solar photosphere</subject><subject>Tracking</subject><subject>Tubes</subject><subject>Wave excitation</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFPHDEMhSMEEgvlzjESV6Zkksxm0hvdtrAqEkgLoqdGTsbZzWo72SahUv89M52KnnqybH_v2bIJOa_Ze9FKdVU3oq2kaNQVdJyp-oDM3kqHZMYYk9VcqG_H5CTn7ZhyrWfk-1MO_Zp-TGG9KfQhhr7Q1Qb2mGmJdBH7XBKEnj7DL6S3CGWko6dlg3QVd5AGJsUePtCHhF1wJQwS6mOin74uV4_vyJGHXcazv_GUPH35_Li4re7ub5aL67vKyXpeqs7aDrmdW8995zRoxbhUbM6s6oR2XrEhwcbXCrHWjXKtwAaHLkgvUDtxSpaTbxdha_Yp_ID020QI5k8hprWBVILboQEvpfWOdy3nErS0urGArrasYa3mo9fF5LVP8ecL5mK28SX1w_qGD7O5ElyygWIT5VLMOaF_m1ozM37EjOc34_nN9JFBcjlJQtz_8_wv_gpgE4tm</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Van Kooten, Samuel J.</creator><creator>Cranmer, Steven R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3699-3134</orcidid><orcidid>https://orcid.org/0000-0002-4472-8517</orcidid></search><sort><creationdate>20240301</creationdate><title>Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST</title><author>Van Kooten, Samuel J. ; Cranmer, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-dbbde2b6bf2fdc9a970247060b7d39cf70706e5f17ee1957c83e5e0b7a4f3e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alfven waves</topic><topic>Alfvén waves</topic><topic>Buffeting</topic><topic>Centroids</topic><topic>Corona</topic><topic>Energy budget</topic><topic>Heating</topic><topic>Heliospheric models</topic><topic>Magnetic flux</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Photosphere</topic><topic>Solar corona</topic><topic>Solar coronal heating</topic><topic>Solar magnetic bright points</topic><topic>Solar photosphere</topic><topic>Tracking</topic><topic>Tubes</topic><topic>Wave excitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Kooten, Samuel J.</creatorcontrib><creatorcontrib>Cranmer, Steven R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Kooten, Samuel J.</au><au>Cranmer, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>964</volume><issue>1</issue><spage>50</spage><pages>50-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Magnetic bright points on the solar photosphere mark the footpoints of kilogauss magnetic flux tubes extending toward the corona. Convective buffeting of these tubes is believed to excite magnetohydrodynamic waves, which can propagate to the corona and deposit heat there. Measuring wave excitation via bright point motion can thus constrain coronal and heliospheric models, and this has been done extensively with centroid tracking, which can estimate kink-mode wave excitation. DKIST is the first telescope to provide well-resolved observations of bright points, allowing shape and size measurements to probe the excitation of other wave modes that have been difficult, if not impossible, to study to date. In this work, we demonstrate a method of automatic bright point tracking that robustly identifies the shapes of bright points, and we develop a technique for interpreting measured bright point shape changes as the driving of a range of thin-tube wave modes. We demonstrate these techniques on a MURaM simulation of DKIST-like resolution. These initial results suggest that modes other than the long-studied kink mode could increase the total available energy budget for wave heating by 50%. Pending observational verification as well as modeling of the propagation and dissipation of these additional wave modes, this could represent a significant increase in the potency of wave-turbulence heating models.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad2071</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3699-3134</orcidid><orcidid>https://orcid.org/0000-0002-4472-8517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-03, Vol.964 (1), p.50 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2957273240 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alfven waves Alfvén waves Buffeting Centroids Corona Energy budget Heating Heliospheric models Magnetic flux Magnetohydrodynamic waves Magnetohydrodynamics Photosphere Solar corona Solar coronal heating Solar magnetic bright points Solar photosphere Tracking Tubes Wave excitation |
title | Using Bright Point Shapes to Constrain Wave Heating of the Solar Corona: Predictions for DKIST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Bright%20Point%20Shapes%20to%20Constrain%20Wave%20Heating%20of%20the%20Solar%20Corona:%20Predictions%20for%20DKIST&rft.jtitle=The%20Astrophysical%20journal&rft.au=Van%20Kooten,%20Samuel%20J.&rft.date=2024-03-01&rft.volume=964&rft.issue=1&rft.spage=50&rft.pages=50-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad2071&rft_dat=%3Cproquest_cross%3E2957273240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957273240&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_af44bfc2d8224a94b95baec1b050892c&rfr_iscdi=true |