Compression Pulse Propagation in Fractured Porous Medium
The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implement...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2023-11, Vol.44 (11), p.4987-4993 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4993 |
---|---|
container_issue | 11 |
container_start_page | 4987 |
container_title | Lobachevskii journal of mathematics |
container_volume | 44 |
creator | Gubaidullin, A. A. Boldyreva, O. Yu Dudko, D. N. |
description | The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process. |
doi_str_mv | 10.1134/S1995080223110161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957242004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957242004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmsbkKMVVYcWCeg5p_ixdbFOT5uC3N2UFD-Jphnm_NzM8hC4BXwNU9OYVhKgxx4RUABgYHKEVcOClEIwc5z7L5aKforMY9ziDjLEV4o0fpmBj7P1YtOkj2qINflI7NS-Tfiw2Qek5BWuK1gefYvFsTZ-Gc3TiVMYvfuoavW_u35rHcvvy8NTcbUtNGJ9Laxi1VClGa6Xzg0oI22lsDDeCQcUN7bgxAJ1zgrNKOGMUMUQ5rTRnHFdrdHXYOwX_mWyc5d6nMOaTkoj6llCCMc0UHCgdfIzBOjmFflDhSwKWS0DyT0DZQw6emNlxZ8Pv5v9N3527Z4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957242004</pqid></control><display><type>article</type><title>Compression Pulse Propagation in Fractured Porous Medium</title><source>SpringerNature Journals</source><creator>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</creator><creatorcontrib>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</creatorcontrib><description>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223110161</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Fractures ; Geometry ; Mass transfer ; Mathematical Logic and Foundations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Porous media ; Probability Theory and Stochastic Processes ; Pulse propagation ; Wave propagation</subject><ispartof>Lobachevskii journal of mathematics, 2023-11, Vol.44 (11), p.4987-4993</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223110161$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223110161$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gubaidullin, A. A.</creatorcontrib><creatorcontrib>Boldyreva, O. Yu</creatorcontrib><creatorcontrib>Dudko, D. N.</creatorcontrib><title>Compression Pulse Propagation in Fractured Porous Medium</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fractures</subject><subject>Geometry</subject><subject>Mass transfer</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Porous media</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Pulse propagation</subject><subject>Wave propagation</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmsbkKMVVYcWCeg5p_ixdbFOT5uC3N2UFD-Jphnm_NzM8hC4BXwNU9OYVhKgxx4RUABgYHKEVcOClEIwc5z7L5aKforMY9ziDjLEV4o0fpmBj7P1YtOkj2qINflI7NS-Tfiw2Qek5BWuK1gefYvFsTZ-Gc3TiVMYvfuoavW_u35rHcvvy8NTcbUtNGJ9Laxi1VClGa6Xzg0oI22lsDDeCQcUN7bgxAJ1zgrNKOGMUMUQ5rTRnHFdrdHXYOwX_mWyc5d6nMOaTkoj6llCCMc0UHCgdfIzBOjmFflDhSwKWS0DyT0DZQw6emNlxZ8Pv5v9N3527Z4w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Gubaidullin, A. A.</creator><creator>Boldyreva, O. Yu</creator><creator>Dudko, D. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Compression Pulse Propagation in Fractured Porous Medium</title><author>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fractures</topic><topic>Geometry</topic><topic>Mass transfer</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Porous media</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Pulse propagation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubaidullin, A. A.</creatorcontrib><creatorcontrib>Boldyreva, O. Yu</creatorcontrib><creatorcontrib>Dudko, D. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubaidullin, A. A.</au><au>Boldyreva, O. Yu</au><au>Dudko, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression Pulse Propagation in Fractured Porous Medium</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>44</volume><issue>11</issue><spage>4987</spage><epage>4993</epage><pages>4987-4993</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223110161</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2023-11, Vol.44 (11), p.4987-4993 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2957242004 |
source | SpringerNature Journals |
subjects | Algebra Analysis Fractures Geometry Mass transfer Mathematical Logic and Foundations Mathematical models Mathematics Mathematics and Statistics Porous media Probability Theory and Stochastic Processes Pulse propagation Wave propagation |
title | Compression Pulse Propagation in Fractured Porous Medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20Pulse%20Propagation%20in%20Fractured%20Porous%20Medium&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Gubaidullin,%20A.%20A.&rft.date=2023-11-01&rft.volume=44&rft.issue=11&rft.spage=4987&rft.epage=4993&rft.pages=4987-4993&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223110161&rft_dat=%3Cproquest_cross%3E2957242004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957242004&rft_id=info:pmid/&rfr_iscdi=true |