Compression Pulse Propagation in Fractured Porous Medium

The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-11, Vol.44 (11), p.4987-4993
Hauptverfasser: Gubaidullin, A. A., Boldyreva, O. Yu, Dudko, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4993
container_issue 11
container_start_page 4987
container_title Lobachevskii journal of mathematics
container_volume 44
creator Gubaidullin, A. A.
Boldyreva, O. Yu
Dudko, D. N.
description The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.
doi_str_mv 10.1134/S1995080223110161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957242004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957242004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmsbkKMVVYcWCeg5p_ixdbFOT5uC3N2UFD-Jphnm_NzM8hC4BXwNU9OYVhKgxx4RUABgYHKEVcOClEIwc5z7L5aKforMY9ziDjLEV4o0fpmBj7P1YtOkj2qINflI7NS-Tfiw2Qek5BWuK1gefYvFsTZ-Gc3TiVMYvfuoavW_u35rHcvvy8NTcbUtNGJ9Laxi1VClGa6Xzg0oI22lsDDeCQcUN7bgxAJ1zgrNKOGMUMUQ5rTRnHFdrdHXYOwX_mWyc5d6nMOaTkoj6llCCMc0UHCgdfIzBOjmFflDhSwKWS0DyT0DZQw6emNlxZ8Pv5v9N3527Z4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957242004</pqid></control><display><type>article</type><title>Compression Pulse Propagation in Fractured Porous Medium</title><source>SpringerNature Journals</source><creator>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</creator><creatorcontrib>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</creatorcontrib><description>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223110161</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Fractures ; Geometry ; Mass transfer ; Mathematical Logic and Foundations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Porous media ; Probability Theory and Stochastic Processes ; Pulse propagation ; Wave propagation</subject><ispartof>Lobachevskii journal of mathematics, 2023-11, Vol.44 (11), p.4987-4993</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223110161$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223110161$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gubaidullin, A. A.</creatorcontrib><creatorcontrib>Boldyreva, O. Yu</creatorcontrib><creatorcontrib>Dudko, D. N.</creatorcontrib><title>Compression Pulse Propagation in Fractured Porous Medium</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Fractures</subject><subject>Geometry</subject><subject>Mass transfer</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Porous media</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Pulse propagation</subject><subject>Wave propagation</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VMmsbkKMVVYcWCeg5p_ixdbFOT5uC3N2UFD-Jphnm_NzM8hC4BXwNU9OYVhKgxx4RUABgYHKEVcOClEIwc5z7L5aKforMY9ziDjLEV4o0fpmBj7P1YtOkj2qINflI7NS-Tfiw2Qek5BWuK1gefYvFsTZ-Gc3TiVMYvfuoavW_u35rHcvvy8NTcbUtNGJ9Laxi1VClGa6Xzg0oI22lsDDeCQcUN7bgxAJ1zgrNKOGMUMUQ5rTRnHFdrdHXYOwX_mWyc5d6nMOaTkoj6llCCMc0UHCgdfIzBOjmFflDhSwKWS0DyT0DZQw6emNlxZ8Pv5v9N3527Z4w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Gubaidullin, A. A.</creator><creator>Boldyreva, O. Yu</creator><creator>Dudko, D. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Compression Pulse Propagation in Fractured Porous Medium</title><author>Gubaidullin, A. A. ; Boldyreva, O. Yu ; Dudko, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ed64e4aa645ac508a99ebc0dd8d96138d4b8dd11bff98639fdda2d2afcac86803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Fractures</topic><topic>Geometry</topic><topic>Mass transfer</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Porous media</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Pulse propagation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubaidullin, A. A.</creatorcontrib><creatorcontrib>Boldyreva, O. Yu</creatorcontrib><creatorcontrib>Dudko, D. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubaidullin, A. A.</au><au>Boldyreva, O. Yu</au><au>Dudko, D. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression Pulse Propagation in Fractured Porous Medium</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>44</volume><issue>11</issue><spage>4987</spage><epage>4993</epage><pages>4987-4993</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The process of propagation of compression pulses in a fractured porous medium has been studied. The study was carried out within the framework of a three-velocity, three-stress mathematical model. The problems are considered in one-dimensional and two-dimensional formulations. The computer implementation of the model is carried out using the methodology previously developed by the authors. The features of this wave process are revealed. With a low intensity of mass transfer between the systems of pores and fractures, there is a mismatch of pressures in the pores and fractures during wave propagation, and with an increase in intensity, a rapid pressure equalization occurs. Comparison of solutions in one-dimensional and two-dimensional cases showed that their difference is due to the geometry of the process.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223110161</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-11, Vol.44 (11), p.4987-4993
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2957242004
source SpringerNature Journals
subjects Algebra
Analysis
Fractures
Geometry
Mass transfer
Mathematical Logic and Foundations
Mathematical models
Mathematics
Mathematics and Statistics
Porous media
Probability Theory and Stochastic Processes
Pulse propagation
Wave propagation
title Compression Pulse Propagation in Fractured Porous Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20Pulse%20Propagation%20in%20Fractured%20Porous%20Medium&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Gubaidullin,%20A.%20A.&rft.date=2023-11-01&rft.volume=44&rft.issue=11&rft.spage=4987&rft.epage=4993&rft.pages=4987-4993&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223110161&rft_dat=%3Cproquest_cross%3E2957242004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957242004&rft_id=info:pmid/&rfr_iscdi=true