Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers

In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al 0.15 Ga 0.85 As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2023-09, Vol.57 (9), p.383-388
Hauptverfasser: Belov, D. A., Ikonnikov, A. V., Pushkarev, S. S., Galiev, R. R., Ponomarev, D. S., Khokhlov, D. R., Ushakov, D. V., Afonenko, A. A., Morozov, S. V., Gavrilenko, V. I., Khabibullin, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 9
container_start_page 383
container_title Semiconductors (Woodbury, N.Y.)
container_volume 57
creator Belov, D. A.
Ikonnikov, A. V.
Pushkarev, S. S.
Galiev, R. R.
Ponomarev, D. S.
Khokhlov, D. R.
Ushakov, D. V.
Afonenko, A. A.
Morozov, S. V.
Gavrilenko, V. I.
Khabibullin, R. A.
description In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al 0.15 Ga 0.85 As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures.
doi_str_mv 10.1134/S1063782623070059
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2957241687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786502827</galeid><sourcerecordid>A786502827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-22d5cf8b2bdfe79e47ecc2e68dcb046944e20820f3b6968bb1c105ca6b8aa8613</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsH78AG8LXk3cr-xujqVaKxRErOcw2cyWlDapu8lBf70JETyIpxlm3mfm5SXkhrOUc6nu3zjT0lihhWSGsSw_ITPOcpZoZfLTsdcyGffn5CLGHWOc20zNyHKDhyMG6PqA9AG3ASro6rahracilXdUpoJCU1GVcrpZfdHXHpquP9AFRAcV0jVEDPGKnHnYR7z-qZfkffm4WayS9cvT82K-Ttxgq0uEqDLnbSnKyqPJURl0TqC2lSuZ0rlSKJgVzMtS59qWJXecZQ50aQGs5vKS3E53j6H96DF2xa7tQzO8LESeGaG4tmZQpZNqC3ss6sa3XQAHo99D7doGfT3M58bqjAkrRoBPgAttjAF9cQz1AcJnwVkx5lv8yXdgxMTEQdtsMfxa-R_6BgSWeKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957241687</pqid></control><display><type>article</type><title>Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers</title><source>Springer Nature - Complete Springer Journals</source><creator>Belov, D. A. ; Ikonnikov, A. V. ; Pushkarev, S. S. ; Galiev, R. R. ; Ponomarev, D. S. ; Khokhlov, D. R. ; Ushakov, D. V. ; Afonenko, A. A. ; Morozov, S. V. ; Gavrilenko, V. I. ; Khabibullin, R. A.</creator><creatorcontrib>Belov, D. A. ; Ikonnikov, A. V. ; Pushkarev, S. S. ; Galiev, R. R. ; Ponomarev, D. S. ; Khokhlov, D. R. ; Ushakov, D. V. ; Afonenko, A. A. ; Morozov, S. V. ; Gavrilenko, V. I. ; Khabibullin, R. A.</creatorcontrib><description>In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al 0.15 Ga 0.85 As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782623070059</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Degradation ; Gold ; Lasers ; Magnetic Materials ; Magnetism ; Operating temperature ; Physics ; Physics and Astronomy ; Quantum cascade lasers ; Waveguides</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2023-09, Vol.57 (9), p.383-388</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7826, Semiconductors, 2023, Vol. 57, No. 9, pp. 383–388. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Fizika i Tekhnika Poluprovodnikov, 2022, Vol. 56, No. 7, pp. 705–710. English Text © Ioffe Institute, 2022.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-22d5cf8b2bdfe79e47ecc2e68dcb046944e20820f3b6968bb1c105ca6b8aa8613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782623070059$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782623070059$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Belov, D. A.</creatorcontrib><creatorcontrib>Ikonnikov, A. V.</creatorcontrib><creatorcontrib>Pushkarev, S. S.</creatorcontrib><creatorcontrib>Galiev, R. R.</creatorcontrib><creatorcontrib>Ponomarev, D. S.</creatorcontrib><creatorcontrib>Khokhlov, D. R.</creatorcontrib><creatorcontrib>Ushakov, D. V.</creatorcontrib><creatorcontrib>Afonenko, A. A.</creatorcontrib><creatorcontrib>Morozov, S. V.</creatorcontrib><creatorcontrib>Gavrilenko, V. I.</creatorcontrib><creatorcontrib>Khabibullin, R. A.</creatorcontrib><title>Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al 0.15 Ga 0.85 As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures.</description><subject>Degradation</subject><subject>Gold</subject><subject>Lasers</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Operating temperature</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum cascade lasers</subject><subject>Waveguides</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsH78AG8LXk3cr-xujqVaKxRErOcw2cyWlDapu8lBf70JETyIpxlm3mfm5SXkhrOUc6nu3zjT0lihhWSGsSw_ITPOcpZoZfLTsdcyGffn5CLGHWOc20zNyHKDhyMG6PqA9AG3ASro6rahracilXdUpoJCU1GVcrpZfdHXHpquP9AFRAcV0jVEDPGKnHnYR7z-qZfkffm4WayS9cvT82K-Ttxgq0uEqDLnbSnKyqPJURl0TqC2lSuZ0rlSKJgVzMtS59qWJXecZQ50aQGs5vKS3E53j6H96DF2xa7tQzO8LESeGaG4tmZQpZNqC3ss6sa3XQAHo99D7doGfT3M58bqjAkrRoBPgAttjAF9cQz1AcJnwVkx5lv8yXdgxMTEQdtsMfxa-R_6BgSWeKs</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Belov, D. A.</creator><creator>Ikonnikov, A. V.</creator><creator>Pushkarev, S. S.</creator><creator>Galiev, R. R.</creator><creator>Ponomarev, D. S.</creator><creator>Khokhlov, D. R.</creator><creator>Ushakov, D. V.</creator><creator>Afonenko, A. A.</creator><creator>Morozov, S. V.</creator><creator>Gavrilenko, V. I.</creator><creator>Khabibullin, R. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers</title><author>Belov, D. A. ; Ikonnikov, A. V. ; Pushkarev, S. S. ; Galiev, R. R. ; Ponomarev, D. S. ; Khokhlov, D. R. ; Ushakov, D. V. ; Afonenko, A. A. ; Morozov, S. V. ; Gavrilenko, V. I. ; Khabibullin, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-22d5cf8b2bdfe79e47ecc2e68dcb046944e20820f3b6968bb1c105ca6b8aa8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Degradation</topic><topic>Gold</topic><topic>Lasers</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Operating temperature</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum cascade lasers</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belov, D. A.</creatorcontrib><creatorcontrib>Ikonnikov, A. V.</creatorcontrib><creatorcontrib>Pushkarev, S. S.</creatorcontrib><creatorcontrib>Galiev, R. R.</creatorcontrib><creatorcontrib>Ponomarev, D. S.</creatorcontrib><creatorcontrib>Khokhlov, D. R.</creatorcontrib><creatorcontrib>Ushakov, D. V.</creatorcontrib><creatorcontrib>Afonenko, A. A.</creatorcontrib><creatorcontrib>Morozov, S. V.</creatorcontrib><creatorcontrib>Gavrilenko, V. I.</creatorcontrib><creatorcontrib>Khabibullin, R. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belov, D. A.</au><au>Ikonnikov, A. V.</au><au>Pushkarev, S. S.</au><au>Galiev, R. R.</au><au>Ponomarev, D. S.</au><au>Khokhlov, D. R.</au><au>Ushakov, D. V.</au><au>Afonenko, A. A.</au><au>Morozov, S. V.</au><au>Gavrilenko, V. I.</au><au>Khabibullin, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>57</volume><issue>9</issue><spage>383</spage><epage>388</epage><pages>383-388</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al 0.15 Ga 0.85 As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5–9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782623070059</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2023-09, Vol.57 (9), p.383-388
issn 1063-7826
1090-6479
language eng
recordid cdi_proquest_journals_2957241687
source Springer Nature - Complete Springer Journals
subjects Degradation
Gold
Lasers
Magnetic Materials
Magnetism
Operating temperature
Physics
Physics and Astronomy
Quantum cascade lasers
Waveguides
title Temperature Degradation of 2.3, 3.2 and 4.1 THz Quantum Cascade Lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Degradation%20of%202.3,%203.2%20and%204.1%20THz%20Quantum%20Cascade%20Lasers&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Belov,%20D.%20A.&rft.date=2023-09-01&rft.volume=57&rft.issue=9&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782623070059&rft_dat=%3Cgale_proqu%3EA786502827%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957241687&rft_id=info:pmid/&rft_galeid=A786502827&rfr_iscdi=true