Quasi-crystalline order in vibrating granular matter

Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2024-03, Vol.20 (3), p.465-471
Hauptverfasser: Plati, A., Maire, R., Fayen, E., Boulogne, F., Restagno, F., Smallenburg, F., Foffi, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 3
container_start_page 465
container_title Nature physics
container_volume 20
creator Plati, A.
Maire, R.
Fayen, E.
Boulogne, F.
Restagno, F.
Smallenburg, F.
Foffi, G.
description Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures have also been discovered at much larger length scales in different microscopic systems for which the size of the elementary building blocks ranges from the nanometre to the micrometre scale. Here we report the first experimental observation of spontaneous quasi-crystalline self-assembly at the millimetre scale. This result is obtained in a fully athermal system of macroscopic spherical grains vibrating on a substrate. Starting from a liquid-like disordered phase, the grains begin to locally arrange into three types of square and triangle tile that eventually align, forming an eight-fold symmetric quasi-crystal that has been predicted in simulation but not yet experimentally observed in non-atomic systems. These results not only demonstrate an alternative route for the spontaneous assembly of quasi-crystals but are of fundamental interest for the connection between equilibrium and non-equilibrium statistical physics. In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.
doi_str_mv 10.1038/s41567-023-02364-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956984896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956984896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3b0a6f6d214bc3720e701cd9d92170569ce641117396d2b2322757e0d39047253</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC52gmkybNURZ1hQUR9BzSNrt06bbrpBX27c1a0ZuHYebw_f_Ax9g1iFsQWNxFBbk2XEg8jlYcTtgMjMq5VAWc_t4Gz9lFjFshlNSAM6ZeRx8bXtEhDr5tmy5kPdWBsqbLPpuS_NB0m2xDvhtbT9nOD0OgS3a29m0MVz97zt4fH94WS756eXpe3K94hRoHjqXweq1rCaqs0EgRjICqtrWVYESubRW0AgCDNkGlRClNboKo0QplZI5zdjP17qn_GEMc3LYfqUsvnbQpX6jC6kTJiaqoj5HC2u2p2Xk6OBDuaMdNdlwy477tOEghnEIxwd0m0F_1P6kvX5Nlfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956984896</pqid></control><display><type>article</type><title>Quasi-crystalline order in vibrating granular matter</title><source>SpringerLink Journals</source><source>Nature</source><creator>Plati, A. ; Maire, R. ; Fayen, E. ; Boulogne, F. ; Restagno, F. ; Smallenburg, F. ; Foffi, G.</creator><creatorcontrib>Plati, A. ; Maire, R. ; Fayen, E. ; Boulogne, F. ; Restagno, F. ; Smallenburg, F. ; Foffi, G.</creatorcontrib><description>Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures have also been discovered at much larger length scales in different microscopic systems for which the size of the elementary building blocks ranges from the nanometre to the micrometre scale. Here we report the first experimental observation of spontaneous quasi-crystalline self-assembly at the millimetre scale. This result is obtained in a fully athermal system of macroscopic spherical grains vibrating on a substrate. Starting from a liquid-like disordered phase, the grains begin to locally arrange into three types of square and triangle tile that eventually align, forming an eight-fold symmetric quasi-crystal that has been predicted in simulation but not yet experimentally observed in non-atomic systems. These results not only demonstrate an alternative route for the spontaneous assembly of quasi-crystals but are of fundamental interest for the connection between equilibrium and non-equilibrium statistical physics. In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02364-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/966 ; 639/766/530 ; 639/766/530/2795 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystal structure ; Crystallography ; Crystals ; Diffraction patterns ; Grains ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Self-assembly ; Substrates ; Theoretical ; Unit cell</subject><ispartof>Nature physics, 2024-03, Vol.20 (3), p.465-471</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3b0a6f6d214bc3720e701cd9d92170569ce641117396d2b2322757e0d39047253</citedby><cites>FETCH-LOGICAL-c363t-3b0a6f6d214bc3720e701cd9d92170569ce641117396d2b2322757e0d39047253</cites><orcidid>0000-0003-2617-4554 ; 0000-0002-9401-6067 ; 0000-0002-7444-1453 ; 0000-0001-9317-6862 ; 0000-0001-7803-6677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-023-02364-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-023-02364-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Plati, A.</creatorcontrib><creatorcontrib>Maire, R.</creatorcontrib><creatorcontrib>Fayen, E.</creatorcontrib><creatorcontrib>Boulogne, F.</creatorcontrib><creatorcontrib>Restagno, F.</creatorcontrib><creatorcontrib>Smallenburg, F.</creatorcontrib><creatorcontrib>Foffi, G.</creatorcontrib><title>Quasi-crystalline order in vibrating granular matter</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures have also been discovered at much larger length scales in different microscopic systems for which the size of the elementary building blocks ranges from the nanometre to the micrometre scale. Here we report the first experimental observation of spontaneous quasi-crystalline self-assembly at the millimetre scale. This result is obtained in a fully athermal system of macroscopic spherical grains vibrating on a substrate. Starting from a liquid-like disordered phase, the grains begin to locally arrange into three types of square and triangle tile that eventually align, forming an eight-fold symmetric quasi-crystal that has been predicted in simulation but not yet experimentally observed in non-atomic systems. These results not only demonstrate an alternative route for the spontaneous assembly of quasi-crystals but are of fundamental interest for the connection between equilibrium and non-equilibrium statistical physics. In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.</description><subject>639/301/923/966</subject><subject>639/766/530</subject><subject>639/766/530/2795</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Diffraction patterns</subject><subject>Grains</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Self-assembly</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Unit cell</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC52gmkybNURZ1hQUR9BzSNrt06bbrpBX27c1a0ZuHYebw_f_Ax9g1iFsQWNxFBbk2XEg8jlYcTtgMjMq5VAWc_t4Gz9lFjFshlNSAM6ZeRx8bXtEhDr5tmy5kPdWBsqbLPpuS_NB0m2xDvhtbT9nOD0OgS3a29m0MVz97zt4fH94WS756eXpe3K94hRoHjqXweq1rCaqs0EgRjICqtrWVYESubRW0AgCDNkGlRClNboKo0QplZI5zdjP17qn_GEMc3LYfqUsvnbQpX6jC6kTJiaqoj5HC2u2p2Xk6OBDuaMdNdlwy477tOEghnEIxwd0m0F_1P6kvX5Nlfg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Plati, A.</creator><creator>Maire, R.</creator><creator>Fayen, E.</creator><creator>Boulogne, F.</creator><creator>Restagno, F.</creator><creator>Smallenburg, F.</creator><creator>Foffi, G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2617-4554</orcidid><orcidid>https://orcid.org/0000-0002-9401-6067</orcidid><orcidid>https://orcid.org/0000-0002-7444-1453</orcidid><orcidid>https://orcid.org/0000-0001-9317-6862</orcidid><orcidid>https://orcid.org/0000-0001-7803-6677</orcidid></search><sort><creationdate>20240301</creationdate><title>Quasi-crystalline order in vibrating granular matter</title><author>Plati, A. ; Maire, R. ; Fayen, E. ; Boulogne, F. ; Restagno, F. ; Smallenburg, F. ; Foffi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3b0a6f6d214bc3720e701cd9d92170569ce641117396d2b2322757e0d39047253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/923/966</topic><topic>639/766/530</topic><topic>639/766/530/2795</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Diffraction patterns</topic><topic>Grains</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Self-assembly</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plati, A.</creatorcontrib><creatorcontrib>Maire, R.</creatorcontrib><creatorcontrib>Fayen, E.</creatorcontrib><creatorcontrib>Boulogne, F.</creatorcontrib><creatorcontrib>Restagno, F.</creatorcontrib><creatorcontrib>Smallenburg, F.</creatorcontrib><creatorcontrib>Foffi, G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plati, A.</au><au>Maire, R.</au><au>Fayen, E.</au><au>Boulogne, F.</au><au>Restagno, F.</au><au>Smallenburg, F.</au><au>Foffi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-crystalline order in vibrating granular matter</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>465</spage><epage>471</epage><pages>465-471</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quasi-crystals are aperiodic structures with crystallographic properties that are not compatible with that of a single unit cell. Their discovery in a metallic alloy more than four decades ago has required a full reconsideration of our definition of a crystal structure. Quasi-crystalline structures have also been discovered at much larger length scales in different microscopic systems for which the size of the elementary building blocks ranges from the nanometre to the micrometre scale. Here we report the first experimental observation of spontaneous quasi-crystalline self-assembly at the millimetre scale. This result is obtained in a fully athermal system of macroscopic spherical grains vibrating on a substrate. Starting from a liquid-like disordered phase, the grains begin to locally arrange into three types of square and triangle tile that eventually align, forming an eight-fold symmetric quasi-crystal that has been predicted in simulation but not yet experimentally observed in non-atomic systems. These results not only demonstrate an alternative route for the spontaneous assembly of quasi-crystals but are of fundamental interest for the connection between equilibrium and non-equilibrium statistical physics. In quasi-crystals, constituents do not form spatially periodic patterns, but their structures still give rise to sharp diffraction patterns. Now, quasi-crystalline patterns are found in a system of spherical macroscopic grains vibrating on a substrate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02364-1</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2617-4554</orcidid><orcidid>https://orcid.org/0000-0002-9401-6067</orcidid><orcidid>https://orcid.org/0000-0002-7444-1453</orcidid><orcidid>https://orcid.org/0000-0001-9317-6862</orcidid><orcidid>https://orcid.org/0000-0001-7803-6677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2024-03, Vol.20 (3), p.465-471
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2956984896
source SpringerLink Journals; Nature
subjects 639/301/923/966
639/766/530
639/766/530/2795
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Crystal structure
Crystallography
Crystals
Diffraction patterns
Grains
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Self-assembly
Substrates
Theoretical
Unit cell
title Quasi-crystalline order in vibrating granular matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-crystalline%20order%20in%20vibrating%20granular%20matter&rft.jtitle=Nature%20physics&rft.au=Plati,%20A.&rft.date=2024-03-01&rft.volume=20&rft.issue=3&rft.spage=465&rft.epage=471&rft.pages=465-471&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02364-1&rft_dat=%3Cproquest_cross%3E2956984896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956984896&rft_id=info:pmid/&rfr_iscdi=true