Elastic shape analysis for unsupervised clustering of left atrial appendage morphology
Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratifica...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zan, Ahmad Yin, Minglang Sukurdeep, Yashil Rotenberg, Noam Kholmovski, Eugene Trayanova, Natalia A |
description | Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956945853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956945853</sourcerecordid><originalsourceid>FETCH-proquest_journals_29569458533</originalsourceid><addsrcrecordid>eNqNzU0KwjAQQOEgCIr2DgOuhZo0_qxF8QDiVoZ20qbEJGYSwdvrwgO4epsP3kTMpVKb9b6RciYq5rGua7ndSa3VXNxODjnbFnjASIAe3ZstgwkJiucSKb0sUwetK5wpWd9DMODIZMCcLDrAGMl32BM8QopDcKF_L8XUoGOqfl2I1fl0PV7WMYVnIc73MZT0nfFdHvT20Oi9Vuo_9QGduEJr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956945853</pqid></control><display><type>article</type><title>Elastic shape analysis for unsupervised clustering of left atrial appendage morphology</title><source>Free E- Journals</source><creator>Zan, Ahmad ; Yin, Minglang ; Sukurdeep, Yashil ; Rotenberg, Noam ; Kholmovski, Eugene ; Trayanova, Natalia A</creator><creatorcontrib>Zan, Ahmad ; Yin, Minglang ; Sukurdeep, Yashil ; Rotenberg, Noam ; Kholmovski, Eugene ; Trayanova, Natalia A</creatorcontrib><description>Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Appendages ; Cardiac arrhythmia ; Classification ; Clustering ; Elastic analysis ; Fibrillation ; Morphology ; Pathogenesis ; Risk ; Stroke ; Unsupervised learning</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zan, Ahmad</creatorcontrib><creatorcontrib>Yin, Minglang</creatorcontrib><creatorcontrib>Sukurdeep, Yashil</creatorcontrib><creatorcontrib>Rotenberg, Noam</creatorcontrib><creatorcontrib>Kholmovski, Eugene</creatorcontrib><creatorcontrib>Trayanova, Natalia A</creatorcontrib><title>Elastic shape analysis for unsupervised clustering of left atrial appendage morphology</title><title>arXiv.org</title><description>Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.</description><subject>Appendages</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Clustering</subject><subject>Elastic analysis</subject><subject>Fibrillation</subject><subject>Morphology</subject><subject>Pathogenesis</subject><subject>Risk</subject><subject>Stroke</subject><subject>Unsupervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzU0KwjAQQOEgCIr2DgOuhZo0_qxF8QDiVoZ20qbEJGYSwdvrwgO4epsP3kTMpVKb9b6RciYq5rGua7ndSa3VXNxODjnbFnjASIAe3ZstgwkJiucSKb0sUwetK5wpWd9DMODIZMCcLDrAGMl32BM8QopDcKF_L8XUoGOqfl2I1fl0PV7WMYVnIc73MZT0nfFdHvT20Oi9Vuo_9QGduEJr</recordid><startdate>20241124</startdate><enddate>20241124</enddate><creator>Zan, Ahmad</creator><creator>Yin, Minglang</creator><creator>Sukurdeep, Yashil</creator><creator>Rotenberg, Noam</creator><creator>Kholmovski, Eugene</creator><creator>Trayanova, Natalia A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241124</creationdate><title>Elastic shape analysis for unsupervised clustering of left atrial appendage morphology</title><author>Zan, Ahmad ; Yin, Minglang ; Sukurdeep, Yashil ; Rotenberg, Noam ; Kholmovski, Eugene ; Trayanova, Natalia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29569458533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Appendages</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Clustering</topic><topic>Elastic analysis</topic><topic>Fibrillation</topic><topic>Morphology</topic><topic>Pathogenesis</topic><topic>Risk</topic><topic>Stroke</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zan, Ahmad</creatorcontrib><creatorcontrib>Yin, Minglang</creatorcontrib><creatorcontrib>Sukurdeep, Yashil</creatorcontrib><creatorcontrib>Rotenberg, Noam</creatorcontrib><creatorcontrib>Kholmovski, Eugene</creatorcontrib><creatorcontrib>Trayanova, Natalia A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zan, Ahmad</au><au>Yin, Minglang</au><au>Sukurdeep, Yashil</au><au>Rotenberg, Noam</au><au>Kholmovski, Eugene</au><au>Trayanova, Natalia A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Elastic shape analysis for unsupervised clustering of left atrial appendage morphology</atitle><jtitle>arXiv.org</jtitle><date>2024-11-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Morphological variations in the left atrial appendage (LAA) are associated with different levels of ischemic stroke risk for patients with atrial fibrillation (AF). Studying LAA morphology can elucidate mechanisms behind this association and lead to the development of advanced stroke risk stratification tools. However, current categorical descriptions of LAA morphologies are qualitative and inconsistent across studies, which impedes advancements in our understanding of stroke pathogenesis in AF. To mitigate these issues, we introduce a quantitative pipeline that combines elastic shape analysis with unsupervised learning for the categorization of LAA morphology in AF patients. As part of our pipeline, we compute pairwise elastic distances between LAA meshes from a cohort of 20 AF patients, and leverage these distances to cluster our shape data. We demonstrate that our method clusters LAA morphologies based on distinctive shape features, overcoming the innate inconsistencies of current LAA categorization systems, and paving the way for improved stroke risk metrics using objective LAA shape groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2956945853 |
source | Free E- Journals |
subjects | Appendages Cardiac arrhythmia Classification Clustering Elastic analysis Fibrillation Morphology Pathogenesis Risk Stroke Unsupervised learning |
title | Elastic shape analysis for unsupervised clustering of left atrial appendage morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Elastic%20shape%20analysis%20for%20unsupervised%20clustering%20of%20left%20atrial%20appendage%20morphology&rft.jtitle=arXiv.org&rft.au=Zan,%20Ahmad&rft.date=2024-11-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2956945853%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956945853&rft_id=info:pmid/&rfr_iscdi=true |