PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections
Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Taiana, Matteo Toso, Matteo Stuart, James Alessio Del Bue |
description | Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956945542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956945542</sourcerecordid><originalsourceid>FETCH-proquest_journals_29569455423</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgs2K5r2S0y6xJKRFfReMKK7tq-J0Ffn4c-oNMMzMyYJ6TcBLtIiAXzEdswDEW8FUpJj12L2-Gc73mqmwYcGNJV3QG_jh3p4KHhzQuLwPOBdK8_FWlreOZsz_O6hScZQOQp0KRTwRWbN1WH4P-4ZOvsdD9egsHZ1whIZWtHZ6ZUikTFSaRUJOR_1xc-rD2G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956945542</pqid></control><display><type>article</type><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><source>Free E- Journals</source><creator>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</creator><creatorcontrib>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</creatorcontrib><description>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Estimation ; Graph theory ; Iterative methods ; Optimization ; Pose estimation</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Taiana, Matteo</creatorcontrib><creatorcontrib>Toso, Matteo</creatorcontrib><creatorcontrib>Stuart, James</creatorcontrib><creatorcontrib>Alessio Del Bue</creatorcontrib><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><title>arXiv.org</title><description>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Graph theory</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Pose estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgs2K5r2S0y6xJKRFfReMKK7tq-J0Ffn4c-oNMMzMyYJ6TcBLtIiAXzEdswDEW8FUpJj12L2-Gc73mqmwYcGNJV3QG_jh3p4KHhzQuLwPOBdK8_FWlreOZsz_O6hScZQOQp0KRTwRWbN1WH4P-4ZOvsdD9egsHZ1whIZWtHZ6ZUikTFSaRUJOR_1xc-rD2G</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Taiana, Matteo</creator><creator>Toso, Matteo</creator><creator>Stuart, James</creator><creator>Alessio Del Bue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240315</creationdate><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><author>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29569455423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Graph theory</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Pose estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Taiana, Matteo</creatorcontrib><creatorcontrib>Toso, Matteo</creatorcontrib><creatorcontrib>Stuart, James</creatorcontrib><creatorcontrib>Alessio Del Bue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taiana, Matteo</au><au>Toso, Matteo</au><au>Stuart, James</au><au>Alessio Del Bue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</atitle><jtitle>arXiv.org</jtitle><date>2024-03-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2956945542 |
source | Free E- Journals |
subjects | Cameras Estimation Graph theory Iterative methods Optimization Pose estimation |
title | PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PRAGO:%20Differentiable%20Multi-View%20Pose%20Optimization%20From%20Objectness%20Detections&rft.jtitle=arXiv.org&rft.au=Taiana,%20Matteo&rft.date=2024-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2956945542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956945542&rft_id=info:pmid/&rfr_iscdi=true |