PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections

Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Taiana, Matteo, Toso, Matteo, Stuart, James, Alessio Del Bue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Taiana, Matteo
Toso, Matteo
Stuart, James
Alessio Del Bue
description Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956945542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956945542</sourcerecordid><originalsourceid>FETCH-proquest_journals_29569455423</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgs2K5r2S0y6xJKRFfReMKK7tq-J0Ffn4c-oNMMzMyYJ6TcBLtIiAXzEdswDEW8FUpJj12L2-Gc73mqmwYcGNJV3QG_jh3p4KHhzQuLwPOBdK8_FWlreOZsz_O6hScZQOQp0KRTwRWbN1WH4P-4ZOvsdD9egsHZ1whIZWtHZ6ZUikTFSaRUJOR_1xc-rD2G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956945542</pqid></control><display><type>article</type><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><source>Free E- Journals</source><creator>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</creator><creatorcontrib>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</creatorcontrib><description>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Estimation ; Graph theory ; Iterative methods ; Optimization ; Pose estimation</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Taiana, Matteo</creatorcontrib><creatorcontrib>Toso, Matteo</creatorcontrib><creatorcontrib>Stuart, James</creatorcontrib><creatorcontrib>Alessio Del Bue</creatorcontrib><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><title>arXiv.org</title><description>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Graph theory</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Pose estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgs2K5r2S0y6xJKRFfReMKK7tq-J0Ffn4c-oNMMzMyYJ6TcBLtIiAXzEdswDEW8FUpJj12L2-Gc73mqmwYcGNJV3QG_jh3p4KHhzQuLwPOBdK8_FWlreOZsz_O6hScZQOQp0KRTwRWbN1WH4P-4ZOvsdD9egsHZ1whIZWtHZ6ZUikTFSaRUJOR_1xc-rD2G</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Taiana, Matteo</creator><creator>Toso, Matteo</creator><creator>Stuart, James</creator><creator>Alessio Del Bue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240315</creationdate><title>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</title><author>Taiana, Matteo ; Toso, Matteo ; Stuart, James ; Alessio Del Bue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29569455423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Graph theory</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Pose estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Taiana, Matteo</creatorcontrib><creatorcontrib>Toso, Matteo</creatorcontrib><creatorcontrib>Stuart, James</creatorcontrib><creatorcontrib>Alessio Del Bue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taiana, Matteo</au><au>Toso, Matteo</au><au>Stuart, James</au><au>Alessio Del Bue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections</atitle><jtitle>arXiv.org</jtitle><date>2024-03-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Robustly estimating camera poses from a set of images is a fundamental task which remains challenging for differentiable methods, especially in the case of small and sparse camera pose graphs. To overcome this challenge, we propose Pose-refined Rotation Averaging Graph Optimization (PRAGO). From a set of objectness detections on unordered images, our method reconstructs the rotational pose, and in turn, the absolute pose, in a differentiable manner benefiting from the optimization of a sequence of geometrical tasks. We show how our objectness pose-refinement module in PRAGO is able to refine the inherent ambiguities in pairwise relative pose estimation without removing edges and avoiding making early decisions on the viability of graph edges. PRAGO then refines the absolute rotations through iterative graph construction, reweighting the graph edges to compute the final rotational pose, which can be converted into absolute poses using translation averaging. We show that PRAGO is able to outperform non-differentiable solvers on small and sparse scenes extracted from 7-Scenes achieving a relative improvement of 21% for rotations while achieving similar translation estimates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2956945542
source Free E- Journals
subjects Cameras
Estimation
Graph theory
Iterative methods
Optimization
Pose estimation
title PRAGO: Differentiable Multi-View Pose Optimization From Objectness Detections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PRAGO:%20Differentiable%20Multi-View%20Pose%20Optimization%20From%20Objectness%20Detections&rft.jtitle=arXiv.org&rft.au=Taiana,%20Matteo&rft.date=2024-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2956945542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956945542&rft_id=info:pmid/&rfr_iscdi=true