Learning-driven Physically-aware Large-scale Circuit Gate Sizing
Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficienc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ye, Yuyang Xu, Peng Ren, Lizheng Chen, Tinghuan Yan, Hao Yu, Bei Shi, Longxing |
description | Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficiency issues when compared with commercial gate sizing tools. In this work, we propose a learning-driven physically-aware gate sizing framework to optimize timing performance on large-scale circuits efficiently. In our gradient descent optimization-based work, for obtaining accurate gradients, a multi-modal gate sizing-aware timing model is achieved via learning timing information on multiple timing paths and physical information on multiple-scaled layouts jointly. Then, gradient generation based on the sizing-oriented estimator and adaptive back-propagation are developed to update gate sizes. Our results demonstrate that our work achieves higher timing performance improvements in a faster way compared with the commercial gate sizing tool. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956941863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956941863</sourcerecordid><originalsourceid>FETCH-proquest_journals_29569418633</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8ElNLMrLzEvXTSnKLEvNUwjIqCzOTE7MyanUTSxPLEpV8EksSk_VLQYKpSo4ZxYll2aWKLgnlqQqBGdWAfXxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kaWpmaWJoYWZsTFxqgAxnTj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956941863</pqid></control><display><type>article</type><title>Learning-driven Physically-aware Large-scale Circuit Gate Sizing</title><source>Free E- Journals</source><creator>Ye, Yuyang ; Xu, Peng ; Ren, Lizheng ; Chen, Tinghuan ; Yan, Hao ; Yu, Bei ; Shi, Longxing</creator><creatorcontrib>Ye, Yuyang ; Xu, Peng ; Ren, Lizheng ; Chen, Tinghuan ; Yan, Hao ; Yu, Bei ; Shi, Longxing</creatorcontrib><description>Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficiency issues when compared with commercial gate sizing tools. In this work, we propose a learning-driven physically-aware gate sizing framework to optimize timing performance on large-scale circuits efficiently. In our gradient descent optimization-based work, for obtaining accurate gradients, a multi-modal gate sizing-aware timing model is achieved via learning timing information on multiple timing paths and physical information on multiple-scaled layouts jointly. Then, gradient generation based on the sizing-oriented estimator and adaptive back-propagation are developed to update gate sizes. Our results demonstrate that our work achieves higher timing performance improvements in a faster way compared with the commercial gate sizing tool.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Back propagation ; Design optimization ; Layouts ; Machine learning ; Sizing</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ye, Yuyang</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Ren, Lizheng</creatorcontrib><creatorcontrib>Chen, Tinghuan</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><title>Learning-driven Physically-aware Large-scale Circuit Gate Sizing</title><title>arXiv.org</title><description>Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficiency issues when compared with commercial gate sizing tools. In this work, we propose a learning-driven physically-aware gate sizing framework to optimize timing performance on large-scale circuits efficiently. In our gradient descent optimization-based work, for obtaining accurate gradients, a multi-modal gate sizing-aware timing model is achieved via learning timing information on multiple timing paths and physical information on multiple-scaled layouts jointly. Then, gradient generation based on the sizing-oriented estimator and adaptive back-propagation are developed to update gate sizes. Our results demonstrate that our work achieves higher timing performance improvements in a faster way compared with the commercial gate sizing tool.</description><subject>Back propagation</subject><subject>Design optimization</subject><subject>Layouts</subject><subject>Machine learning</subject><subject>Sizing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8ElNLMrLzEvXTSnKLEvNUwjIqCzOTE7MyanUTSxPLEpV8EksSk_VLQYKpSo4ZxYll2aWKLgnlqQqBGdWAfXxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kaWpmaWJoYWZsTFxqgAxnTj7</recordid><startdate>20240313</startdate><enddate>20240313</enddate><creator>Ye, Yuyang</creator><creator>Xu, Peng</creator><creator>Ren, Lizheng</creator><creator>Chen, Tinghuan</creator><creator>Yan, Hao</creator><creator>Yu, Bei</creator><creator>Shi, Longxing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240313</creationdate><title>Learning-driven Physically-aware Large-scale Circuit Gate Sizing</title><author>Ye, Yuyang ; Xu, Peng ; Ren, Lizheng ; Chen, Tinghuan ; Yan, Hao ; Yu, Bei ; Shi, Longxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29569418633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Design optimization</topic><topic>Layouts</topic><topic>Machine learning</topic><topic>Sizing</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yuyang</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Ren, Lizheng</creatorcontrib><creatorcontrib>Chen, Tinghuan</creatorcontrib><creatorcontrib>Yan, Hao</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yuyang</au><au>Xu, Peng</au><au>Ren, Lizheng</au><au>Chen, Tinghuan</au><au>Yan, Hao</au><au>Yu, Bei</au><au>Shi, Longxing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning-driven Physically-aware Large-scale Circuit Gate Sizing</atitle><jtitle>arXiv.org</jtitle><date>2024-03-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gate sizing plays an important role in timing optimization after physical design. Existing machine learning-based gate sizing works cannot optimize timing on multiple timing paths simultaneously and neglect the physical constraint on layouts. They cause sub-optimal sizing solutions and low-efficiency issues when compared with commercial gate sizing tools. In this work, we propose a learning-driven physically-aware gate sizing framework to optimize timing performance on large-scale circuits efficiently. In our gradient descent optimization-based work, for obtaining accurate gradients, a multi-modal gate sizing-aware timing model is achieved via learning timing information on multiple timing paths and physical information on multiple-scaled layouts jointly. Then, gradient generation based on the sizing-oriented estimator and adaptive back-propagation are developed to update gate sizes. Our results demonstrate that our work achieves higher timing performance improvements in a faster way compared with the commercial gate sizing tool.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2956941863 |
source | Free E- Journals |
subjects | Back propagation Design optimization Layouts Machine learning Sizing |
title | Learning-driven Physically-aware Large-scale Circuit Gate Sizing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning-driven%20Physically-aware%20Large-scale%20Circuit%20Gate%20Sizing&rft.jtitle=arXiv.org&rft.au=Ye,%20Yuyang&rft.date=2024-03-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2956941863%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956941863&rft_id=info:pmid/&rfr_iscdi=true |