An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations
In this article, we present an effective technique for solving nonlinear Stratonovich-Volterra integral equations. The technique is based on Taylor wavelet to construct the operational matrix of integration (OMI) and the stochastic OMI. These matrices allow us to approximate the equations using a fi...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2024-04, Vol.10 (2), Article 67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 10 |
creator | Ahmed, Shahid Jahan, Shah |
description | In this article, we present an effective technique for solving nonlinear Stratonovich-Volterra integral equations. The technique is based on Taylor wavelet to construct the operational matrix of integration (OMI) and the stochastic OMI. These matrices allow us to approximate the equations using a finite number of basis functions. By employing these operational matrices, we discretize the integral equations and transform them into a set of algebraic equations, which can be solved using Newton’s method. Further, we conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. To demonstrate the precision and accuracy of our approach, we compare our results with those obtained using block pulse functions and the Legendre wavelet method. Numerical examples are provided to show the efficiency of our approach. |
doi_str_mv | 10.1007/s40819-024-01701-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956785988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956785988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185z-1278aaa6028a4136ec571b02838ad4f20b2428619444b4336f23d05aa7cc2ae03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwFPA82r-7SZ7rKVqoerBqscw3c22W9akTdJC--mNruDN07wZ3psZfghdUXJDCZG3QRBFy4wwkREqCc2OJ2jAaFlmuSyL06S5SJoSfo6GIawJIYwKSZgaoPXI4knTtFVrbMRPJq5cje8gmBo7i-dw6JzHH7A3nYm4SfrVdfvWLvGzs11rDaRJ9BCddfu2WmXvrovGe8BTG83SQ4cn2x3E1tlwic4a6IIZ_tYL9HY_mY8fs9nLw3Q8mmUVVfkxo0wqACjSeyAoL0yVS7pIHVdQi4aRBRNMFbQUQiwE50XDeE1yAFlVDAzhF-i637vxbrszIeq123mbTmpW5oVUealUcrHeVXkXgjeN3vj2E_xBU6K_seoeq05Y9Q9WfUwh3odCMtul8X-r_0l9Ac3cexQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956785988</pqid></control><display><type>article</type><title>An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations</title><source>SpringerLink Journals</source><creator>Ahmed, Shahid ; Jahan, Shah</creator><creatorcontrib>Ahmed, Shahid ; Jahan, Shah</creatorcontrib><description>In this article, we present an effective technique for solving nonlinear Stratonovich-Volterra integral equations. The technique is based on Taylor wavelet to construct the operational matrix of integration (OMI) and the stochastic OMI. These matrices allow us to approximate the equations using a finite number of basis functions. By employing these operational matrices, we discretize the integral equations and transform them into a set of algebraic equations, which can be solved using Newton’s method. Further, we conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. To demonstrate the precision and accuracy of our approach, we compare our results with those obtained using block pulse functions and the Legendre wavelet method. Numerical examples are provided to show the efficiency of our approach.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-024-01701-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Basis functions ; Computational Science and Engineering ; Error analysis ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical ; Volterra integral equations ; Wavelet analysis</subject><ispartof>International journal of applied and computational mathematics, 2024-04, Vol.10 (2), Article 67</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185z-1278aaa6028a4136ec571b02838ad4f20b2428619444b4336f23d05aa7cc2ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-024-01701-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-024-01701-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ahmed, Shahid</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><title>An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this article, we present an effective technique for solving nonlinear Stratonovich-Volterra integral equations. The technique is based on Taylor wavelet to construct the operational matrix of integration (OMI) and the stochastic OMI. These matrices allow us to approximate the equations using a finite number of basis functions. By employing these operational matrices, we discretize the integral equations and transform them into a set of algebraic equations, which can be solved using Newton’s method. Further, we conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. To demonstrate the precision and accuracy of our approach, we compare our results with those obtained using block pulse functions and the Legendre wavelet method. Numerical examples are provided to show the efficiency of our approach.</description><subject>Applications of Mathematics</subject><subject>Basis functions</subject><subject>Computational Science and Engineering</subject><subject>Error analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Volterra integral equations</subject><subject>Wavelet analysis</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwFPA82r-7SZ7rKVqoerBqscw3c22W9akTdJC--mNruDN07wZ3psZfghdUXJDCZG3QRBFy4wwkREqCc2OJ2jAaFlmuSyL06S5SJoSfo6GIawJIYwKSZgaoPXI4knTtFVrbMRPJq5cje8gmBo7i-dw6JzHH7A3nYm4SfrVdfvWLvGzs11rDaRJ9BCddfu2WmXvrovGe8BTG83SQ4cn2x3E1tlwic4a6IIZ_tYL9HY_mY8fs9nLw3Q8mmUVVfkxo0wqACjSeyAoL0yVS7pIHVdQi4aRBRNMFbQUQiwE50XDeE1yAFlVDAzhF-i637vxbrszIeq123mbTmpW5oVUealUcrHeVXkXgjeN3vj2E_xBU6K_seoeq05Y9Q9WfUwh3odCMtul8X-r_0l9Ac3cexQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ahmed, Shahid</creator><creator>Jahan, Shah</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations</title><author>Ahmed, Shahid ; Jahan, Shah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185z-1278aaa6028a4136ec571b02838ad4f20b2428619444b4336f23d05aa7cc2ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Basis functions</topic><topic>Computational Science and Engineering</topic><topic>Error analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Volterra integral equations</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Shahid</creatorcontrib><creatorcontrib>Jahan, Shah</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Shahid</au><au>Jahan, Shah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><artnum>67</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this article, we present an effective technique for solving nonlinear Stratonovich-Volterra integral equations. The technique is based on Taylor wavelet to construct the operational matrix of integration (OMI) and the stochastic OMI. These matrices allow us to approximate the equations using a finite number of basis functions. By employing these operational matrices, we discretize the integral equations and transform them into a set of algebraic equations, which can be solved using Newton’s method. Further, we conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. To demonstrate the precision and accuracy of our approach, we compare our results with those obtained using block pulse functions and the Legendre wavelet method. Numerical examples are provided to show the efficiency of our approach.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-024-01701-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2024-04, Vol.10 (2), Article 67 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2956785988 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Basis functions Computational Science and Engineering Error analysis Mathematical analysis Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical Volterra integral equations Wavelet analysis |
title | An Efficient Method Based on Taylor Wavelet for Solving Nonlinear Stratonovich-Volterra Integral Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Method%20Based%20on%20Taylor%20Wavelet%20for%20Solving%20Nonlinear%20Stratonovich-Volterra%20Integral%20Equations&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Ahmed,%20Shahid&rft.date=2024-04-01&rft.volume=10&rft.issue=2&rft.artnum=67&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-024-01701-z&rft_dat=%3Cproquest_cross%3E2956785988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956785988&rft_id=info:pmid/&rfr_iscdi=true |