On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups

We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-12, Vol.114 (5-6), p.716-727
Hauptverfasser: Chekhlov, A. R., Danchev, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 5-6
container_start_page 716
container_title Mathematical Notes
container_volume 114
creator Chekhlov, A. R.
Danchev, P. V.
description We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.
doi_str_mv 10.1134/S0001434623110081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956784591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956784591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9Xc_GvzOIZug8GE6nNJurR2bElN2sG-va0TfBCfLodzfufCQegeyCMA4085IQQ445IyAEIyuEATEClLsiyVl2gy2snoX6ObGHeDAglkghYbh2fG7hvt8CL4vo14qY-Nq_Eq-oMP7UdT4tfgWxtw3gXv6v0Jr9xRh4HocN6b-pu6RVeV3kd793On6P3l-W2-TNabxWo-WyclA9klfCttpWRJqZZEKKGMEVSCJUTprVGUGVaKLS8lpFmlhZECNIOMVhWz3FLCpujh3NsG_9nb2BU73wc3vCyoEjLNuFAwpOCcKoOPMdiqaENz0OFUACnGvYo_ew0MPTNxyLraht_m_6Evmo5rQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956784591</pqid></control><display><type>article</type><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chekhlov, A. R. ; Danchev, P. V.</creator><creatorcontrib>Chekhlov, A. R. ; Danchev, P. V.</creatorcontrib><description>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623110081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Group theory ; Invariants ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mathematical Notes, 2023-12, Vol.114 (5-6), p.716-727</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</citedby><cites>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623110081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623110081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chekhlov, A. R.</creatorcontrib><creatorcontrib>Danchev, P. V.</creatorcontrib><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Group theory</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9Xc_GvzOIZug8GE6nNJurR2bElN2sG-va0TfBCfLodzfufCQegeyCMA4085IQQ445IyAEIyuEATEClLsiyVl2gy2snoX6ObGHeDAglkghYbh2fG7hvt8CL4vo14qY-Nq_Eq-oMP7UdT4tfgWxtw3gXv6v0Jr9xRh4HocN6b-pu6RVeV3kd793On6P3l-W2-TNabxWo-WyclA9klfCttpWRJqZZEKKGMEVSCJUTprVGUGVaKLS8lpFmlhZECNIOMVhWz3FLCpujh3NsG_9nb2BU73wc3vCyoEjLNuFAwpOCcKoOPMdiqaENz0OFUACnGvYo_ew0MPTNxyLraht_m_6Evmo5rQA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chekhlov, A. R.</creator><creator>Danchev, P. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><author>Chekhlov, A. R. ; Danchev, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Group theory</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chekhlov, A. R.</creatorcontrib><creatorcontrib>Danchev, P. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chekhlov, A. R.</au><au>Danchev, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>114</volume><issue>5-6</issue><spage>716</spage><epage>727</epage><pages>716-727</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623110081</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2023-12, Vol.114 (5-6), p.716-727
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2956784591
source SpringerLink Journals - AutoHoldings
subjects 14/34
639/766/189
639/766/530
639/766/747
Group theory
Invariants
Mathematics
Mathematics and Statistics
Subgroups
title On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Abelian%20Groups%20Having%20Isomorphic%20Proper%20Strongly%20Invariant%20Subgroups&rft.jtitle=Mathematical%20Notes&rft.au=Chekhlov,%20A.%20R.&rft.date=2023-12-01&rft.volume=114&rft.issue=5-6&rft.spage=716&rft.epage=727&rft.pages=716-727&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623110081&rft_dat=%3Cproquest_cross%3E2956784591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956784591&rft_id=info:pmid/&rfr_iscdi=true