On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups
We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups iso...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2023-12, Vol.114 (5-6), p.716-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 5-6 |
container_start_page | 716 |
container_title | Mathematical Notes |
container_volume | 114 |
creator | Chekhlov, A. R. Danchev, P. V. |
description | We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group. |
doi_str_mv | 10.1134/S0001434623110081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956784591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956784591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9Xc_GvzOIZug8GE6nNJurR2bElN2sG-va0TfBCfLodzfufCQegeyCMA4085IQQ445IyAEIyuEATEClLsiyVl2gy2snoX6ObGHeDAglkghYbh2fG7hvt8CL4vo14qY-Nq_Eq-oMP7UdT4tfgWxtw3gXv6v0Jr9xRh4HocN6b-pu6RVeV3kd793On6P3l-W2-TNabxWo-WyclA9klfCttpWRJqZZEKKGMEVSCJUTprVGUGVaKLS8lpFmlhZECNIOMVhWz3FLCpujh3NsG_9nb2BU73wc3vCyoEjLNuFAwpOCcKoOPMdiqaENz0OFUACnGvYo_ew0MPTNxyLraht_m_6Evmo5rQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956784591</pqid></control><display><type>article</type><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chekhlov, A. R. ; Danchev, P. V.</creator><creatorcontrib>Chekhlov, A. R. ; Danchev, P. V.</creatorcontrib><description>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434623110081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Group theory ; Invariants ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mathematical Notes, 2023-12, Vol.114 (5-6), p.716-727</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</citedby><cites>FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434623110081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434623110081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chekhlov, A. R.</creatorcontrib><creatorcontrib>Danchev, P. V.</creatorcontrib><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Group theory</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9Xc_GvzOIZug8GE6nNJurR2bElN2sG-va0TfBCfLodzfufCQegeyCMA4085IQQ445IyAEIyuEATEClLsiyVl2gy2snoX6ObGHeDAglkghYbh2fG7hvt8CL4vo14qY-Nq_Eq-oMP7UdT4tfgWxtw3gXv6v0Jr9xRh4HocN6b-pu6RVeV3kd793On6P3l-W2-TNabxWo-WyclA9klfCttpWRJqZZEKKGMEVSCJUTprVGUGVaKLS8lpFmlhZECNIOMVhWz3FLCpujh3NsG_9nb2BU73wc3vCyoEjLNuFAwpOCcKoOPMdiqaENz0OFUACnGvYo_ew0MPTNxyLraht_m_6Evmo5rQA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chekhlov, A. R.</creator><creator>Danchev, P. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</title><author>Chekhlov, A. R. ; Danchev, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4d6ef96c22a605959bb5261e009adb923b3c5d4c6178fa5b651a3182ff3e4e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Group theory</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chekhlov, A. R.</creatorcontrib><creatorcontrib>Danchev, P. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chekhlov, A. R.</au><au>Danchev, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>114</volume><issue>5-6</issue><spage>716</spage><epage>727</epage><pages>716-727</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>We consider two variants of those Abelian groups with all proper strongly invariant subgroups isomorphic and give an in-depth study of their basic and specific properties in either parallel or contrast to the Abelian groups with all proper fully invariant (respectively, characteristic) subgroups isomorphic, which are studied in details by the current authors in Commun. Algebra (2015) and in J. Commut. Algebra (2023). In addition, we also explore those Abelian groups having at least one proper strongly invariant subgroup isomorphic to the whole group.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434623110081</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4346 |
ispartof | Mathematical Notes, 2023-12, Vol.114 (5-6), p.716-727 |
issn | 0001-4346 1067-9073 1573-8876 |
language | eng |
recordid | cdi_proquest_journals_2956784591 |
source | SpringerLink Journals - AutoHoldings |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Group theory Invariants Mathematics Mathematics and Statistics Subgroups |
title | On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Abelian%20Groups%20Having%20Isomorphic%20Proper%20Strongly%20Invariant%20Subgroups&rft.jtitle=Mathematical%20Notes&rft.au=Chekhlov,%20A.%20R.&rft.date=2023-12-01&rft.volume=114&rft.issue=5-6&rft.spage=716&rft.epage=727&rft.pages=716-727&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434623110081&rft_dat=%3Cproquest_cross%3E2956784591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956784591&rft_id=info:pmid/&rfr_iscdi=true |