Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters
Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most c...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-03, Vol.16 (11), p.5768-5775 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5775 |
---|---|
container_issue | 11 |
container_start_page | 5768 |
container_title | Nanoscale |
container_volume | 16 |
creator | Haddad, Lucy Gianolio, Diego Dunstan, David J Liu, Ying Rankine, Conor Sapelkin, Andrei |
description | Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
Analysis of the extended X-ray absorption fine structure can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. |
doi_str_mv | 10.1039/d3nr05110b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956732521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932937714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-401bb2a726a42bdc08443d1e1d84575bd2050afa4cedba641cbc8f82cb9579093</originalsourceid><addsrcrecordid>eNpd0U1LwzAYB_AgipvTi3cl4EWEat7atN62uakwFN_AW0nSdGZ07UzSQ_30dnZOEAIJPL88PPkHgGOMLjGiyVVGS4tCjJHcAX2CGAoo5WR3e45YDxw4t0AoSmhE90GPxgwzwuM-0E-1KL3JG1POoSl9bbypyms4Eo12RpRQrFa2EuoD-grmZl5b7WCVw6W2xrcX4OR9OH2BohRF40xXEnOjoDNfGqqidl5bdwj2clE4fbTZB-BtOnkd3wWzx9v78XAWKMqpDxjCUhLBSSQYkZlCMWM0wxpnMQt5KDOCQiRywZTOpIgYVlLFeUyUTEKeoIQOwHnXt535s9bOp0vjlC4KUeqqdilJaLs4x6ylZ__ooqpt-4y1CiNOSUhwqy46pWzlnNV5urJmKWyTYpSuw09v6MPzT_ijFp9uWtZyqbMt_U27BScdsE5tq3-_R78BPU2I1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956732521</pqid></control><display><type>article</type><title>Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Haddad, Lucy ; Gianolio, Diego ; Dunstan, David J ; Liu, Ying ; Rankine, Conor ; Sapelkin, Andrei</creator><creatorcontrib>Haddad, Lucy ; Gianolio, Diego ; Dunstan, David J ; Liu, Ying ; Rankine, Conor ; Sapelkin, Andrei</creatorcontrib><description>Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
Analysis of the extended X-ray absorption fine structure can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr05110b</identifier><identifier>PMID: 38414278</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic structure ; Bayes Theorem ; Bayesian analysis ; Cluster analysis ; Data analysis ; Decision analysis ; Figure of merit ; Fine structure ; Structural models ; X ray absorption</subject><ispartof>Nanoscale, 2024-03, Vol.16 (11), p.5768-5775</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-401bb2a726a42bdc08443d1e1d84575bd2050afa4cedba641cbc8f82cb9579093</citedby><cites>FETCH-LOGICAL-c373t-401bb2a726a42bdc08443d1e1d84575bd2050afa4cedba641cbc8f82cb9579093</cites><orcidid>0000-0002-2537-5429 ; 0000-0003-0725-1841 ; 0000-0003-4183-2324 ; 0000-0002-7104-847X ; 0000-0002-0708-4492 ; 0000-0001-7648-8215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38414278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haddad, Lucy</creatorcontrib><creatorcontrib>Gianolio, Diego</creatorcontrib><creatorcontrib>Dunstan, David J</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Rankine, Conor</creatorcontrib><creatorcontrib>Sapelkin, Andrei</creatorcontrib><title>Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
Analysis of the extended X-ray absorption fine structure can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model.</description><subject>Atomic structure</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Cluster analysis</subject><subject>Data analysis</subject><subject>Decision analysis</subject><subject>Figure of merit</subject><subject>Fine structure</subject><subject>Structural models</subject><subject>X ray absorption</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LwzAYB_AgipvTi3cl4EWEat7atN62uakwFN_AW0nSdGZ07UzSQ_30dnZOEAIJPL88PPkHgGOMLjGiyVVGS4tCjJHcAX2CGAoo5WR3e45YDxw4t0AoSmhE90GPxgwzwuM-0E-1KL3JG1POoSl9bbypyms4Eo12RpRQrFa2EuoD-grmZl5b7WCVw6W2xrcX4OR9OH2BohRF40xXEnOjoDNfGqqidl5bdwj2clE4fbTZB-BtOnkd3wWzx9v78XAWKMqpDxjCUhLBSSQYkZlCMWM0wxpnMQt5KDOCQiRywZTOpIgYVlLFeUyUTEKeoIQOwHnXt535s9bOp0vjlC4KUeqqdilJaLs4x6ylZ__ooqpt-4y1CiNOSUhwqy46pWzlnNV5urJmKWyTYpSuw09v6MPzT_ijFp9uWtZyqbMt_U27BScdsE5tq3-_R78BPU2I1A</recordid><startdate>20240314</startdate><enddate>20240314</enddate><creator>Haddad, Lucy</creator><creator>Gianolio, Diego</creator><creator>Dunstan, David J</creator><creator>Liu, Ying</creator><creator>Rankine, Conor</creator><creator>Sapelkin, Andrei</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2537-5429</orcidid><orcidid>https://orcid.org/0000-0003-0725-1841</orcidid><orcidid>https://orcid.org/0000-0003-4183-2324</orcidid><orcidid>https://orcid.org/0000-0002-7104-847X</orcidid><orcidid>https://orcid.org/0000-0002-0708-4492</orcidid><orcidid>https://orcid.org/0000-0001-7648-8215</orcidid></search><sort><creationdate>20240314</creationdate><title>Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters</title><author>Haddad, Lucy ; Gianolio, Diego ; Dunstan, David J ; Liu, Ying ; Rankine, Conor ; Sapelkin, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-401bb2a726a42bdc08443d1e1d84575bd2050afa4cedba641cbc8f82cb9579093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Cluster analysis</topic><topic>Data analysis</topic><topic>Decision analysis</topic><topic>Figure of merit</topic><topic>Fine structure</topic><topic>Structural models</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddad, Lucy</creatorcontrib><creatorcontrib>Gianolio, Diego</creatorcontrib><creatorcontrib>Dunstan, David J</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Rankine, Conor</creatorcontrib><creatorcontrib>Sapelkin, Andrei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddad, Lucy</au><au>Gianolio, Diego</au><au>Dunstan, David J</au><au>Liu, Ying</au><au>Rankine, Conor</au><au>Sapelkin, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-03-14</date><risdate>2024</risdate><volume>16</volume><issue>11</issue><spage>5768</spage><epage>5775</epage><pages>5768-5775</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
Analysis of the extended X-ray absorption fine structure can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38414278</pmid><doi>10.1039/d3nr05110b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2537-5429</orcidid><orcidid>https://orcid.org/0000-0003-0725-1841</orcidid><orcidid>https://orcid.org/0000-0003-4183-2324</orcidid><orcidid>https://orcid.org/0000-0002-7104-847X</orcidid><orcidid>https://orcid.org/0000-0002-0708-4492</orcidid><orcidid>https://orcid.org/0000-0001-7648-8215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-03, Vol.16 (11), p.5768-5775 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2956732521 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Atomic structure Bayes Theorem Bayesian analysis Cluster analysis Data analysis Decision analysis Figure of merit Fine structure Structural models X ray absorption |
title | Quantifying intuition: Bayesian approach to figures of merit in EXAFS analysis of magic size clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20intuition:%20Bayesian%20approach%20to%20figures%20of%20merit%20in%20EXAFS%20analysis%20of%20magic%20size%20clusters&rft.jtitle=Nanoscale&rft.au=Haddad,%20Lucy&rft.date=2024-03-14&rft.volume=16&rft.issue=11&rft.spage=5768&rft.epage=5775&rft.pages=5768-5775&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr05110b&rft_dat=%3Cproquest_cross%3E2932937714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956732521&rft_id=info:pmid/38414278&rfr_iscdi=true |