Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design
Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and po...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-03, Vol.14 (12), p.824-825 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 12 |
container_start_page | 824 |
container_title | RSC advances |
container_volume | 14 |
creator | Lin, Shao-Long Chen, Yan-Song Liu, Ruo-Yu Zhu, Mei-Ying Zhu, Tian Wang, Ming-Qi Liu, Bao-Quan |
description | Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities.
By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA. |
doi_str_mv | 10.1039/d3ra08550c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2956639755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957165364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</originalsourceid><addsrcrecordid>eNpdkt1r2zAUxcXYWEKbl72vCPZSCm4ly5LtpxLSTwgU9vEsZPnaVWZLmWQX8t9XXrq0nV4k7vnpcHSvEPpCyTklrLyomVek4JzoD2iekkwkKRHlxzfnGVqEsCFxCU5TQT-jGSuyYpLmyP7YWfCtCYPRWGkNHXg1GGexa3Cv9KOxgDtQ3hrbYmVr3LsO9Ngpj2unf0_Vxnm89S4MaoAkbEGbZjKzg2nB4s6007UagmntMfrUqC7A4mU_Qr9urn-u7pL1w-39arlONCuKIUm5zmtdMchpjMrSkmecK1VWtQCoCkqKigmts5pRkmVcMMF5BYLmDc0JZw07Qpd73-1Y9VBrsINXndx60yu_k04Z-V6x5lG27klSUjKREhIdTl8cvPszQhhkb0JsT6csuDHImCmngjORRfTbf-jGjd7G902UEKzMOY_U2Z7SsVXBQ3NIQ4mcRimv2Pfl31GuInzyNv8B_Te4CHzdAz7og_r6F9gzisSkXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956639755</pqid></control><display><type>article</type><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</creator><creatorcontrib>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</creatorcontrib><description>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities.
By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra08550c</identifier><identifier>PMID: 38482069</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Antibodies ; Antigens ; Binding ; Biomarkers ; Chemical synthesis ; Chemistry ; Homology ; Lead compounds ; Ligands ; Machine learning ; Molecular docking</subject><ispartof>RSC advances, 2024-03, Vol.14 (12), p.824-825</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</cites><orcidid>0000-0002-3034-7262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936200/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936200/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38482069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shao-Long</creatorcontrib><creatorcontrib>Chen, Yan-Song</creatorcontrib><creatorcontrib>Liu, Ruo-Yu</creatorcontrib><creatorcontrib>Zhu, Mei-Ying</creatorcontrib><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Wang, Ming-Qi</creatorcontrib><creatorcontrib>Liu, Bao-Quan</creatorcontrib><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities.
By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</description><subject>Antibodies</subject><subject>Antigens</subject><subject>Binding</subject><subject>Biomarkers</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Homology</subject><subject>Lead compounds</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Molecular docking</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkt1r2zAUxcXYWEKbl72vCPZSCm4ly5LtpxLSTwgU9vEsZPnaVWZLmWQX8t9XXrq0nV4k7vnpcHSvEPpCyTklrLyomVek4JzoD2iekkwkKRHlxzfnGVqEsCFxCU5TQT-jGSuyYpLmyP7YWfCtCYPRWGkNHXg1GGexa3Cv9KOxgDtQ3hrbYmVr3LsO9Ngpj2unf0_Vxnm89S4MaoAkbEGbZjKzg2nB4s6007UagmntMfrUqC7A4mU_Qr9urn-u7pL1w-39arlONCuKIUm5zmtdMchpjMrSkmecK1VWtQCoCkqKigmts5pRkmVcMMF5BYLmDc0JZw07Qpd73-1Y9VBrsINXndx60yu_k04Z-V6x5lG27klSUjKREhIdTl8cvPszQhhkb0JsT6csuDHImCmngjORRfTbf-jGjd7G902UEKzMOY_U2Z7SsVXBQ3NIQ4mcRimv2Pfl31GuInzyNv8B_Te4CHzdAz7og_r6F9gzisSkXw</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Lin, Shao-Long</creator><creator>Chen, Yan-Song</creator><creator>Liu, Ruo-Yu</creator><creator>Zhu, Mei-Ying</creator><creator>Zhu, Tian</creator><creator>Wang, Ming-Qi</creator><creator>Liu, Bao-Quan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3034-7262</orcidid></search><sort><creationdate>20240306</creationdate><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><author>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibodies</topic><topic>Antigens</topic><topic>Binding</topic><topic>Biomarkers</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Homology</topic><topic>Lead compounds</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Molecular docking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shao-Long</creatorcontrib><creatorcontrib>Chen, Yan-Song</creatorcontrib><creatorcontrib>Liu, Ruo-Yu</creatorcontrib><creatorcontrib>Zhu, Mei-Ying</creatorcontrib><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Wang, Ming-Qi</creatorcontrib><creatorcontrib>Liu, Bao-Quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shao-Long</au><au>Chen, Yan-Song</au><au>Liu, Ruo-Yu</au><au>Zhu, Mei-Ying</au><au>Zhu, Tian</au><au>Wang, Ming-Qi</au><au>Liu, Bao-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><spage>824</spage><epage>825</epage><pages>824-825</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities.
By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38482069</pmid><doi>10.1039/d3ra08550c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3034-7262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-03, Vol.14 (12), p.824-825 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_journals_2956639755 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Antibodies Antigens Binding Biomarkers Chemical synthesis Chemistry Homology Lead compounds Ligands Machine learning Molecular docking |
title | Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20acceleration%20of%20machine%20learning%20and%20molecular%20docking%20for%20prostate-specific%20antigen%20ligand%20design&rft.jtitle=RSC%20advances&rft.au=Lin,%20Shao-Long&rft.date=2024-03-06&rft.volume=14&rft.issue=12&rft.spage=824&rft.epage=825&rft.pages=824-825&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra08550c&rft_dat=%3Cproquest_pubme%3E2957165364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956639755&rft_id=info:pmid/38482069&rfr_iscdi=true |