Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design

Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-03, Vol.14 (12), p.824-825
Hauptverfasser: Lin, Shao-Long, Chen, Yan-Song, Liu, Ruo-Yu, Zhu, Mei-Ying, Zhu, Tian, Wang, Ming-Qi, Liu, Bao-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 12
container_start_page 824
container_title RSC advances
container_volume 14
creator Lin, Shao-Long
Chen, Yan-Song
Liu, Ruo-Yu
Zhu, Mei-Ying
Zhu, Tian
Wang, Ming-Qi
Liu, Bao-Quan
description Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.
doi_str_mv 10.1039/d3ra08550c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2956639755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957165364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</originalsourceid><addsrcrecordid>eNpdkt1r2zAUxcXYWEKbl72vCPZSCm4ly5LtpxLSTwgU9vEsZPnaVWZLmWQX8t9XXrq0nV4k7vnpcHSvEPpCyTklrLyomVek4JzoD2iekkwkKRHlxzfnGVqEsCFxCU5TQT-jGSuyYpLmyP7YWfCtCYPRWGkNHXg1GGexa3Cv9KOxgDtQ3hrbYmVr3LsO9Ngpj2unf0_Vxnm89S4MaoAkbEGbZjKzg2nB4s6007UagmntMfrUqC7A4mU_Qr9urn-u7pL1w-39arlONCuKIUm5zmtdMchpjMrSkmecK1VWtQCoCkqKigmts5pRkmVcMMF5BYLmDc0JZw07Qpd73-1Y9VBrsINXndx60yu_k04Z-V6x5lG27klSUjKREhIdTl8cvPszQhhkb0JsT6csuDHImCmngjORRfTbf-jGjd7G902UEKzMOY_U2Z7SsVXBQ3NIQ4mcRimv2Pfl31GuInzyNv8B_Te4CHzdAz7og_r6F9gzisSkXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956639755</pqid></control><display><type>article</type><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</creator><creatorcontrib>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</creatorcontrib><description>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra08550c</identifier><identifier>PMID: 38482069</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Antibodies ; Antigens ; Binding ; Biomarkers ; Chemical synthesis ; Chemistry ; Homology ; Lead compounds ; Ligands ; Machine learning ; Molecular docking</subject><ispartof>RSC advances, 2024-03, Vol.14 (12), p.824-825</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</cites><orcidid>0000-0002-3034-7262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936200/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936200/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38482069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shao-Long</creatorcontrib><creatorcontrib>Chen, Yan-Song</creatorcontrib><creatorcontrib>Liu, Ruo-Yu</creatorcontrib><creatorcontrib>Zhu, Mei-Ying</creatorcontrib><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Wang, Ming-Qi</creatorcontrib><creatorcontrib>Liu, Bao-Quan</creatorcontrib><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</description><subject>Antibodies</subject><subject>Antigens</subject><subject>Binding</subject><subject>Biomarkers</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Homology</subject><subject>Lead compounds</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Molecular docking</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkt1r2zAUxcXYWEKbl72vCPZSCm4ly5LtpxLSTwgU9vEsZPnaVWZLmWQX8t9XXrq0nV4k7vnpcHSvEPpCyTklrLyomVek4JzoD2iekkwkKRHlxzfnGVqEsCFxCU5TQT-jGSuyYpLmyP7YWfCtCYPRWGkNHXg1GGexa3Cv9KOxgDtQ3hrbYmVr3LsO9Ngpj2unf0_Vxnm89S4MaoAkbEGbZjKzg2nB4s6007UagmntMfrUqC7A4mU_Qr9urn-u7pL1w-39arlONCuKIUm5zmtdMchpjMrSkmecK1VWtQCoCkqKigmts5pRkmVcMMF5BYLmDc0JZw07Qpd73-1Y9VBrsINXndx60yu_k04Z-V6x5lG27klSUjKREhIdTl8cvPszQhhkb0JsT6csuDHImCmngjORRfTbf-jGjd7G902UEKzMOY_U2Z7SsVXBQ3NIQ4mcRimv2Pfl31GuInzyNv8B_Te4CHzdAz7og_r6F9gzisSkXw</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Lin, Shao-Long</creator><creator>Chen, Yan-Song</creator><creator>Liu, Ruo-Yu</creator><creator>Zhu, Mei-Ying</creator><creator>Zhu, Tian</creator><creator>Wang, Ming-Qi</creator><creator>Liu, Bao-Quan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3034-7262</orcidid></search><sort><creationdate>20240306</creationdate><title>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</title><author>Lin, Shao-Long ; Chen, Yan-Song ; Liu, Ruo-Yu ; Zhu, Mei-Ying ; Zhu, Tian ; Wang, Ming-Qi ; Liu, Bao-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-25c7dcb3e713843295455aa9bd6eeb8108b36cc4d31044563655be617f17053f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibodies</topic><topic>Antigens</topic><topic>Binding</topic><topic>Biomarkers</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Homology</topic><topic>Lead compounds</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Molecular docking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shao-Long</creatorcontrib><creatorcontrib>Chen, Yan-Song</creatorcontrib><creatorcontrib>Liu, Ruo-Yu</creatorcontrib><creatorcontrib>Zhu, Mei-Ying</creatorcontrib><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Wang, Ming-Qi</creatorcontrib><creatorcontrib>Liu, Bao-Quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shao-Long</au><au>Chen, Yan-Song</au><au>Liu, Ruo-Yu</au><au>Zhu, Mei-Ying</au><au>Zhu, Tian</au><au>Wang, Ming-Qi</au><au>Liu, Bao-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-03-06</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><spage>824</spage><epage>825</epage><pages>824-825</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen-antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared to those developed before by researchers using high-throughput screening for PSA, substantially reducing screening and development costs. Unlike antibody detection, the design of these small molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study establishes a systematic framework for the rapid development of customized ligands that precisely target specific protein entities. By employing a million-level virtual screening to obtain potential PSA compounds and effectively guiding the synthesis using machine learning methods, we obtained lead compounds that exhibited significantly improved binding affinity for PSA.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38482069</pmid><doi>10.1039/d3ra08550c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3034-7262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-03, Vol.14 (12), p.824-825
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_journals_2956639755
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Antibodies
Antigens
Binding
Biomarkers
Chemical synthesis
Chemistry
Homology
Lead compounds
Ligands
Machine learning
Molecular docking
title Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20acceleration%20of%20machine%20learning%20and%20molecular%20docking%20for%20prostate-specific%20antigen%20ligand%20design&rft.jtitle=RSC%20advances&rft.au=Lin,%20Shao-Long&rft.date=2024-03-06&rft.volume=14&rft.issue=12&rft.spage=824&rft.epage=825&rft.pages=824-825&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra08550c&rft_dat=%3Cproquest_pubme%3E2957165364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956639755&rft_id=info:pmid/38482069&rfr_iscdi=true