Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations
Insights into wave propagation in prestressed porous rocks have great interest in geophysical applications, such as remote monitoring in situ stresses. Wave-induced small dynamic fields superposed onto statically deformed objects can be addressed traditionally by acoustoporoelastic theory that exten...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zheng, Haochen Fu, Li-Yun Yang, Haidi Fu, Bo-Ye Deng, Wubing |
description | Insights into wave propagation in prestressed porous rocks have great interest in geophysical applications, such as remote monitoring in situ stresses. Wave-induced small dynamic fields superposed onto statically deformed objects can be addressed traditionally by acoustoporoelastic theory that extends the classical acoustoelasticity of solids to porous media by incorporating Biot's theory. Stress-induced deformations in porous rocks are of a progressively scaling feature with increasing prestress, undergoing linear elastic, hyperelastic (nonlinearly elastic), and inelastic deformations prior to mechanical failure. Conventional acoustoporoelastic theory is based on the Taylor expansion for the cubic strain-energy function with linear strains under finite-magnitude prestress. The theory with third-order elastic constants (3oeCs) only accounts for stress-induced hyperelasticity, insufficient to handle inelastic deformations with nonlinear strains of compliant microstructures. We replace the Taylor expansion with the Padé approximation to the strain energy function, leading to Padé acoustoporoelastic equations for inelastic deformations under large-magnitude prestress. Theoretical results from plane-wave analyses agree well with the laboratory measurements of fluid-saturated Portland sandstones under confining and uniaxial prestresses. Finite-difference simulations are implemented to solve the first-order velocity-stress formulation of Padé acoustoporoelastic equations for elastic wave propagation in prestressed porous media under isotropic (confining) and anisotropic (uniaxial and pure shear) prestresses. The resulting wavefield snapshots show the propagation of fast-P and slow-P and slow-S waves in acoustoporoelastic media, illustrating stress-induced velocity orthotropies, strongly related to the direction of prestress. Comparisons with conventional acoustoporoelastic simulations provide a framework to estimate stress-induced inelastic strains from seismic responses in velocity and anisotropy. |
doi_str_mv | 10.1109/TGRS.2024.3369173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2956383818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10444617</ieee_id><sourcerecordid>2956383818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-dcd10335755d7478d0cadf8e9892c8e31f9d63a0d2a707cd59c429737e1bf9383</originalsourceid><addsrcrecordid>eNpNkM9KAzEQxoMoWKsPIHgIeN6av5vNsbRaCwVLrfQYYpLVre2mJrtCH8nn8MXM2h48DMMw3_fN8APgGqMBxkjeLSeL5wFBhA0ozSUW9AT0MOdFhnLGTkEPYZlnpJDkHFzEuEYIM45FD2zm2v58w6HxbWz8zgfvNjo2lamaPSx9gDQbw5X-cnAe_E6_6abyNazqNLrYpIrOwnmytREuvPmIcFU173BaH2Pg2KWU7Z8tXoKzUm-iuzr2Pnh5uF-OHrPZ02Q6Gs4yQ1jeZNZYjCjlgnMrmCgsMtqWhZPpfVM4iktpc6qRJVogYSyXhhEpqHD4tZS0oH1we8jdBf_Zpj_V2rehTicVkTxPigJ3KnxQmeBjDK5Uu1BtddgrjFQHVXVQVQdVHaEmz83BUznn_ukZY3na_wL5P3Tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956383818</pqid></control><display><type>article</type><title>Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Haochen ; Fu, Li-Yun ; Yang, Haidi ; Fu, Bo-Ye ; Deng, Wubing</creator><creatorcontrib>Zheng, Haochen ; Fu, Li-Yun ; Yang, Haidi ; Fu, Bo-Ye ; Deng, Wubing</creatorcontrib><description>Insights into wave propagation in prestressed porous rocks have great interest in geophysical applications, such as remote monitoring in situ stresses. Wave-induced small dynamic fields superposed onto statically deformed objects can be addressed traditionally by acoustoporoelastic theory that extends the classical acoustoelasticity of solids to porous media by incorporating Biot's theory. Stress-induced deformations in porous rocks are of a progressively scaling feature with increasing prestress, undergoing linear elastic, hyperelastic (nonlinearly elastic), and inelastic deformations prior to mechanical failure. Conventional acoustoporoelastic theory is based on the Taylor expansion for the cubic strain-energy function with linear strains under finite-magnitude prestress. The theory with third-order elastic constants (3oeCs) only accounts for stress-induced hyperelasticity, insufficient to handle inelastic deformations with nonlinear strains of compliant microstructures. We replace the Taylor expansion with the Padé approximation to the strain energy function, leading to Padé acoustoporoelastic equations for inelastic deformations under large-magnitude prestress. Theoretical results from plane-wave analyses agree well with the laboratory measurements of fluid-saturated Portland sandstones under confining and uniaxial prestresses. Finite-difference simulations are implemented to solve the first-order velocity-stress formulation of Padé acoustoporoelastic equations for elastic wave propagation in prestressed porous media under isotropic (confining) and anisotropic (uniaxial and pure shear) prestresses. The resulting wavefield snapshots show the propagation of fast-P and slow-P and slow-S waves in acoustoporoelastic media, illustrating stress-induced velocity orthotropies, strongly related to the direction of prestress. Comparisons with conventional acoustoporoelastic simulations provide a framework to estimate stress-induced inelastic strains from seismic responses in velocity and anisotropy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3369173</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustoelasticity ; Acoustoporoelasticity ; Anisotropic ; Anisotropy ; Approximation ; Confining ; Constants ; Deformation ; Elastic anisotropy ; Elastic constants ; Elastic deformation ; Elastic properties ; Elastic waves ; Mathematical analysis ; Mathematical models ; Mechanical failure ; Media ; Modulus of elasticity ; Padé approximation ; Plane waves ; Porous media ; prestressed porous media ; Prestressing ; Propagation ; Remote monitoring ; Rock ; Rocks ; S waves ; Sandstone ; Scaling ; Seismic response ; Strain ; Strain energy ; Stress ; Taylor series ; Theories ; Three-dimensional displays ; Velocity ; Wave analysis ; Wave propagation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-dcd10335755d7478d0cadf8e9892c8e31f9d63a0d2a707cd59c429737e1bf9383</cites><orcidid>0009-0009-5988-617X ; 0000-0001-8692-8405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10444617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10444617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Haochen</creatorcontrib><creatorcontrib>Fu, Li-Yun</creatorcontrib><creatorcontrib>Yang, Haidi</creatorcontrib><creatorcontrib>Fu, Bo-Ye</creatorcontrib><creatorcontrib>Deng, Wubing</creatorcontrib><title>Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Insights into wave propagation in prestressed porous rocks have great interest in geophysical applications, such as remote monitoring in situ stresses. Wave-induced small dynamic fields superposed onto statically deformed objects can be addressed traditionally by acoustoporoelastic theory that extends the classical acoustoelasticity of solids to porous media by incorporating Biot's theory. Stress-induced deformations in porous rocks are of a progressively scaling feature with increasing prestress, undergoing linear elastic, hyperelastic (nonlinearly elastic), and inelastic deformations prior to mechanical failure. Conventional acoustoporoelastic theory is based on the Taylor expansion for the cubic strain-energy function with linear strains under finite-magnitude prestress. The theory with third-order elastic constants (3oeCs) only accounts for stress-induced hyperelasticity, insufficient to handle inelastic deformations with nonlinear strains of compliant microstructures. We replace the Taylor expansion with the Padé approximation to the strain energy function, leading to Padé acoustoporoelastic equations for inelastic deformations under large-magnitude prestress. Theoretical results from plane-wave analyses agree well with the laboratory measurements of fluid-saturated Portland sandstones under confining and uniaxial prestresses. Finite-difference simulations are implemented to solve the first-order velocity-stress formulation of Padé acoustoporoelastic equations for elastic wave propagation in prestressed porous media under isotropic (confining) and anisotropic (uniaxial and pure shear) prestresses. The resulting wavefield snapshots show the propagation of fast-P and slow-P and slow-S waves in acoustoporoelastic media, illustrating stress-induced velocity orthotropies, strongly related to the direction of prestress. Comparisons with conventional acoustoporoelastic simulations provide a framework to estimate stress-induced inelastic strains from seismic responses in velocity and anisotropy.</description><subject>Acoustoelasticity</subject><subject>Acoustoporoelasticity</subject><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Confining</subject><subject>Constants</subject><subject>Deformation</subject><subject>Elastic anisotropy</subject><subject>Elastic constants</subject><subject>Elastic deformation</subject><subject>Elastic properties</subject><subject>Elastic waves</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical failure</subject><subject>Media</subject><subject>Modulus of elasticity</subject><subject>Padé approximation</subject><subject>Plane waves</subject><subject>Porous media</subject><subject>prestressed porous media</subject><subject>Prestressing</subject><subject>Propagation</subject><subject>Remote monitoring</subject><subject>Rock</subject><subject>Rocks</subject><subject>S waves</subject><subject>Sandstone</subject><subject>Scaling</subject><subject>Seismic response</subject><subject>Strain</subject><subject>Strain energy</subject><subject>Stress</subject><subject>Taylor series</subject><subject>Theories</subject><subject>Three-dimensional displays</subject><subject>Velocity</subject><subject>Wave analysis</subject><subject>Wave propagation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KAzEQxoMoWKsPIHgIeN6av5vNsbRaCwVLrfQYYpLVre2mJrtCH8nn8MXM2h48DMMw3_fN8APgGqMBxkjeLSeL5wFBhA0ozSUW9AT0MOdFhnLGTkEPYZlnpJDkHFzEuEYIM45FD2zm2v58w6HxbWz8zgfvNjo2lamaPSx9gDQbw5X-cnAe_E6_6abyNazqNLrYpIrOwnmytREuvPmIcFU173BaH2Pg2KWU7Z8tXoKzUm-iuzr2Pnh5uF-OHrPZ02Q6Gs4yQ1jeZNZYjCjlgnMrmCgsMtqWhZPpfVM4iktpc6qRJVogYSyXhhEpqHD4tZS0oH1we8jdBf_Zpj_V2rehTicVkTxPigJ3KnxQmeBjDK5Uu1BtddgrjFQHVXVQVQdVHaEmz83BUznn_ukZY3na_wL5P3Tp</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Haochen</creator><creator>Fu, Li-Yun</creator><creator>Yang, Haidi</creator><creator>Fu, Bo-Ye</creator><creator>Deng, Wubing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-5988-617X</orcidid><orcidid>https://orcid.org/0000-0001-8692-8405</orcidid></search><sort><creationdate>2024</creationdate><title>Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations</title><author>Zheng, Haochen ; Fu, Li-Yun ; Yang, Haidi ; Fu, Bo-Ye ; Deng, Wubing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-dcd10335755d7478d0cadf8e9892c8e31f9d63a0d2a707cd59c429737e1bf9383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustoelasticity</topic><topic>Acoustoporoelasticity</topic><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Confining</topic><topic>Constants</topic><topic>Deformation</topic><topic>Elastic anisotropy</topic><topic>Elastic constants</topic><topic>Elastic deformation</topic><topic>Elastic properties</topic><topic>Elastic waves</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical failure</topic><topic>Media</topic><topic>Modulus of elasticity</topic><topic>Padé approximation</topic><topic>Plane waves</topic><topic>Porous media</topic><topic>prestressed porous media</topic><topic>Prestressing</topic><topic>Propagation</topic><topic>Remote monitoring</topic><topic>Rock</topic><topic>Rocks</topic><topic>S waves</topic><topic>Sandstone</topic><topic>Scaling</topic><topic>Seismic response</topic><topic>Strain</topic><topic>Strain energy</topic><topic>Stress</topic><topic>Taylor series</topic><topic>Theories</topic><topic>Three-dimensional displays</topic><topic>Velocity</topic><topic>Wave analysis</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Haochen</creatorcontrib><creatorcontrib>Fu, Li-Yun</creatorcontrib><creatorcontrib>Yang, Haidi</creatorcontrib><creatorcontrib>Fu, Bo-Ye</creatorcontrib><creatorcontrib>Deng, Wubing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Haochen</au><au>Fu, Li-Yun</au><au>Yang, Haidi</au><au>Fu, Bo-Ye</au><au>Deng, Wubing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Insights into wave propagation in prestressed porous rocks have great interest in geophysical applications, such as remote monitoring in situ stresses. Wave-induced small dynamic fields superposed onto statically deformed objects can be addressed traditionally by acoustoporoelastic theory that extends the classical acoustoelasticity of solids to porous media by incorporating Biot's theory. Stress-induced deformations in porous rocks are of a progressively scaling feature with increasing prestress, undergoing linear elastic, hyperelastic (nonlinearly elastic), and inelastic deformations prior to mechanical failure. Conventional acoustoporoelastic theory is based on the Taylor expansion for the cubic strain-energy function with linear strains under finite-magnitude prestress. The theory with third-order elastic constants (3oeCs) only accounts for stress-induced hyperelasticity, insufficient to handle inelastic deformations with nonlinear strains of compliant microstructures. We replace the Taylor expansion with the Padé approximation to the strain energy function, leading to Padé acoustoporoelastic equations for inelastic deformations under large-magnitude prestress. Theoretical results from plane-wave analyses agree well with the laboratory measurements of fluid-saturated Portland sandstones under confining and uniaxial prestresses. Finite-difference simulations are implemented to solve the first-order velocity-stress formulation of Padé acoustoporoelastic equations for elastic wave propagation in prestressed porous media under isotropic (confining) and anisotropic (uniaxial and pure shear) prestresses. The resulting wavefield snapshots show the propagation of fast-P and slow-P and slow-S waves in acoustoporoelastic media, illustrating stress-induced velocity orthotropies, strongly related to the direction of prestress. Comparisons with conventional acoustoporoelastic simulations provide a framework to estimate stress-induced inelastic strains from seismic responses in velocity and anisotropy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3369173</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-5988-617X</orcidid><orcidid>https://orcid.org/0000-0001-8692-8405</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2956383818 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustoelasticity Acoustoporoelasticity Anisotropic Anisotropy Approximation Confining Constants Deformation Elastic anisotropy Elastic constants Elastic deformation Elastic properties Elastic waves Mathematical analysis Mathematical models Mechanical failure Media Modulus of elasticity Padé approximation Plane waves Porous media prestressed porous media Prestressing Propagation Remote monitoring Rock Rocks S waves Sandstone Scaling Seismic response Strain Strain energy Stress Taylor series Theories Three-dimensional displays Velocity Wave analysis Wave propagation |
title | Padé Acoustoporoelasticity for 3-D Wave Propagation in Prestressed Porous Rocks With Inelastic Deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pad%C3%A9%20Acoustoporoelasticity%20for%203-D%20Wave%20Propagation%20in%20Prestressed%20Porous%20Rocks%20With%20Inelastic%20Deformations&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Haochen&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3369173&rft_dat=%3Cproquest_RIE%3E2956383818%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956383818&rft_id=info:pmid/&rft_ieee_id=10444617&rfr_iscdi=true |