NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data

Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-03, Vol.80 (5), p.6746-6777
Hauptverfasser: Hashim, Ali Jameel, Balafar, M. A., Tanha, Jafar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6777
container_issue 5
container_start_page 6746
container_title The Journal of supercomputing
container_volume 80
creator Hashim, Ali Jameel
Balafar, M. A.
Tanha, Jafar
description Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.
doi_str_mv 10.1007/s11227-023-05715-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956208095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956208095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm2yy3kpZP6C0l95Dkk1kS7upSVbov3ftCt6EgWHged-BB6F7Ao8EQDwlQigVGGiJgQvCMVygGeFiPJlkl2gGNQUsOaPX6CalHQCwUpQztFk3i-a5WLshhuYr7Ifchb5YDDk0vQ2ti4UPsdB9OOj9qWhddvZMdD-TXexdLnLU3ne2aHXWt-jK631yd797jrYvzXb5hleb1_flYoUtFZCxqI0wTgrmK2Zl6z0YycG6lnMhqJfEtcZaLmtTSU0qYpwtK0YNpcwzo8s5ephqjzF8Di5ltQtD7MePita8oiCh5iNFJ8rGkFJ0Xh1jd9DxpAioH29q8qZGb-rsTcEYKqdQGuH-w8W_6n9S3xMlcIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956208095</pqid></control><display><type>article</type><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</creator><creatorcontrib>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</creatorcontrib><description>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05715-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abnormalities ; Anomalies ; Artificial intelligence ; Communications traffic ; Compilers ; Computer Science ; Cybersecurity ; Datasets ; Genetic algorithms ; Internet of Things ; Interpreters ; Performance measurement ; Processor Architectures ; Programming Languages ; Wireless communications</subject><ispartof>The Journal of supercomputing, 2024-03, Vol.80 (5), p.6746-6777</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05715-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05715-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hashim, Ali Jameel</creatorcontrib><creatorcontrib>Balafar, M. A.</creatorcontrib><creatorcontrib>Tanha, Jafar</creatorcontrib><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Communications traffic</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Interpreters</subject><subject>Performance measurement</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Wireless communications</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm2yy3kpZP6C0l95Dkk1kS7upSVbov3ftCt6EgWHged-BB6F7Ao8EQDwlQigVGGiJgQvCMVygGeFiPJlkl2gGNQUsOaPX6CalHQCwUpQztFk3i-a5WLshhuYr7Ifchb5YDDk0vQ2ti4UPsdB9OOj9qWhddvZMdD-TXexdLnLU3ne2aHXWt-jK631yd797jrYvzXb5hleb1_flYoUtFZCxqI0wTgrmK2Zl6z0YycG6lnMhqJfEtcZaLmtTSU0qYpwtK0YNpcwzo8s5ephqjzF8Di5ltQtD7MePita8oiCh5iNFJ8rGkFJ0Xh1jd9DxpAioH29q8qZGb-rsTcEYKqdQGuH-w8W_6n9S3xMlcIY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hashim, Ali Jameel</creator><creator>Balafar, M. A.</creator><creator>Tanha, Jafar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><author>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Communications traffic</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Interpreters</topic><topic>Performance measurement</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashim, Ali Jameel</creatorcontrib><creatorcontrib>Balafar, M. A.</creatorcontrib><creatorcontrib>Tanha, Jafar</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashim, Ali Jameel</au><au>Balafar, M. A.</au><au>Tanha, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>80</volume><issue>5</issue><spage>6746</spage><epage>6777</epage><pages>6746-6777</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05715-0</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024-03, Vol.80 (5), p.6746-6777
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2956208095
source SpringerLink Journals - AutoHoldings
subjects Abnormalities
Anomalies
Artificial intelligence
Communications traffic
Compilers
Computer Science
Cybersecurity
Datasets
Genetic algorithms
Internet of Things
Interpreters
Performance measurement
Processor Architectures
Programming Languages
Wireless communications
title NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEAE:%20NeuroEvolution%20AutoEncoder%20for%20anomaly%20detection%20in%20internet%20traffic%20data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Hashim,%20Ali%20Jameel&rft.date=2024-03-01&rft.volume=80&rft.issue=5&rft.spage=6746&rft.epage=6777&rft.pages=6746-6777&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05715-0&rft_dat=%3Cproquest_cross%3E2956208095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956208095&rft_id=info:pmid/&rfr_iscdi=true