NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data
Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-03, Vol.80 (5), p.6746-6777 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6777 |
---|---|
container_issue | 5 |
container_start_page | 6746 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Hashim, Ali Jameel Balafar, M. A. Tanha, Jafar |
description | Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance. |
doi_str_mv | 10.1007/s11227-023-05715-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956208095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956208095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm2yy3kpZP6C0l95Dkk1kS7upSVbov3ftCt6EgWHged-BB6F7Ao8EQDwlQigVGGiJgQvCMVygGeFiPJlkl2gGNQUsOaPX6CalHQCwUpQztFk3i-a5WLshhuYr7Ifchb5YDDk0vQ2ti4UPsdB9OOj9qWhddvZMdD-TXexdLnLU3ne2aHXWt-jK631yd797jrYvzXb5hleb1_flYoUtFZCxqI0wTgrmK2Zl6z0YycG6lnMhqJfEtcZaLmtTSU0qYpwtK0YNpcwzo8s5ephqjzF8Di5ltQtD7MePita8oiCh5iNFJ8rGkFJ0Xh1jd9DxpAioH29q8qZGb-rsTcEYKqdQGuH-w8W_6n9S3xMlcIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956208095</pqid></control><display><type>article</type><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</creator><creatorcontrib>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</creatorcontrib><description>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05715-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abnormalities ; Anomalies ; Artificial intelligence ; Communications traffic ; Compilers ; Computer Science ; Cybersecurity ; Datasets ; Genetic algorithms ; Internet of Things ; Interpreters ; Performance measurement ; Processor Architectures ; Programming Languages ; Wireless communications</subject><ispartof>The Journal of supercomputing, 2024-03, Vol.80 (5), p.6746-6777</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05715-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05715-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hashim, Ali Jameel</creatorcontrib><creatorcontrib>Balafar, M. A.</creatorcontrib><creatorcontrib>Tanha, Jafar</creatorcontrib><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Communications traffic</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Interpreters</subject><subject>Performance measurement</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Wireless communications</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm2yy3kpZP6C0l95Dkk1kS7upSVbov3ftCt6EgWHged-BB6F7Ao8EQDwlQigVGGiJgQvCMVygGeFiPJlkl2gGNQUsOaPX6CalHQCwUpQztFk3i-a5WLshhuYr7Ifchb5YDDk0vQ2ti4UPsdB9OOj9qWhddvZMdD-TXexdLnLU3ne2aHXWt-jK631yd797jrYvzXb5hleb1_flYoUtFZCxqI0wTgrmK2Zl6z0YycG6lnMhqJfEtcZaLmtTSU0qYpwtK0YNpcwzo8s5ephqjzF8Di5ltQtD7MePita8oiCh5iNFJ8rGkFJ0Xh1jd9DxpAioH29q8qZGb-rsTcEYKqdQGuH-w8W_6n9S3xMlcIY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Hashim, Ali Jameel</creator><creator>Balafar, M. A.</creator><creator>Tanha, Jafar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</title><author>Hashim, Ali Jameel ; Balafar, M. A. ; Tanha, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-79b7be874f64c8dff0b850ced55772f81edbcc589b68a161bec3642b224f4ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Communications traffic</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Interpreters</topic><topic>Performance measurement</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashim, Ali Jameel</creatorcontrib><creatorcontrib>Balafar, M. A.</creatorcontrib><creatorcontrib>Tanha, Jafar</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashim, Ali Jameel</au><au>Balafar, M. A.</au><au>Tanha, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>80</volume><issue>5</issue><spage>6746</spage><epage>6777</epage><pages>6746-6777</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Abnormal behaviors degrade overall system efficiency and may lead to system suspension. Extensive academic research has focused on anomaly detection across various sectors, including industrial, information security, and artificial intelligence. In this study, we propose a NeuroEvolution AutoEncoder (NEAE) for classifying and predicting abnormalities in internet-based applications. The NEAE is genetically programmed to process dataset features that encompass abnormal behaviors in internet activities. Our approach targets multivariate anomalies using parallel dimension processing, aiming for synchronized intelligence. Genetic programming is central to our technique, enhancing optimization. We evaluate our proposed technique using a substantial internet-based dataset, specifically network traffic. Simulation results demonstrate the effectiveness of the NEAE in detecting abnormalities based on performance metrics. Given its relevance and integration with diverse industries such as the Internet of Things, wireless communication, network traffic, and the web, we choose an Internet-based application dataset to validate the NEAE’s performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05715-0</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-03, Vol.80 (5), p.6746-6777 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2956208095 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abnormalities Anomalies Artificial intelligence Communications traffic Compilers Computer Science Cybersecurity Datasets Genetic algorithms Internet of Things Interpreters Performance measurement Processor Architectures Programming Languages Wireless communications |
title | NEAE: NeuroEvolution AutoEncoder for anomaly detection in internet traffic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEAE:%20NeuroEvolution%20AutoEncoder%20for%20anomaly%20detection%20in%20internet%20traffic%20data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Hashim,%20Ali%20Jameel&rft.date=2024-03-01&rft.volume=80&rft.issue=5&rft.spage=6746&rft.epage=6777&rft.pages=6746-6777&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05715-0&rft_dat=%3Cproquest_cross%3E2956208095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956208095&rft_id=info:pmid/&rfr_iscdi=true |