The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks
Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2024-03, Vol.18 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 18 |
creator | Zaitsev, Ignatii Corley-Wiciak, Agnieszka Anna Corley-Wiciak, Cedric Marvin Hartwig Zoellner Richter, Carsten Zatterin, Edoardo Virgilio, Michele Martín-García, Beatriz Spirito, Davide Costanza Lucia Manganelli |
description | Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures. |
doi_str_mv | 10.1002/pssr.202300348 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956069782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956069782</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-9e1c74526679e58c1dc79b7d07ea7b64e499babc55544da24f6c3fa895bccf3b3</originalsourceid><addsrcrecordid>eNo9jb1OwzAYRS0EEqWwMltibYrj33iEAqVSEUOzV47zBVKC49quaN-AmUfkSYgEYrpHukf3InSZk2lOCL32MYYpJZQRwnhxhEZ5IWkmqSLH_yz4KTqLcUOI0IqzEdqWr4AXLkHwnTngCtIHgMOrFEzrJnjl8KwfWpcm2Lgal_DuIZi0C4D7QfMmtabrDvgOPLh68PDt4L0Yj1uH55B_f37tV26Pn1ob-rqNb_EcnTSmi3Dxl2NUPtyXs8ds-TxfzG6WmddFyjTkVnFBpVQaRGHz2ipdqZooMKqSHLjWlamsEILz2lDeSMsaU2hRWduwio3R1e-sD_12BzGtN_0uuOFxTbWQRGpVUPYDrnNeQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956069782</pqid></control><display><type>article</type><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><source>Access via Wiley Online Library</source><creator>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</creator><creatorcontrib>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</creatorcontrib><description>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202300348</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Band structure of solids ; CMOS ; Deformation ; Emission analysis ; Energy gap ; Finite element method ; Germanium ; Intermetallic compounds ; Operating temperature ; Optoelectronics ; Photoluminescence ; Potential theory ; Robustness (mathematics) ; Temperature dependence ; Tin</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2024-03, Vol.18 (3)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaitsev, Ignatii</creatorcontrib><creatorcontrib>Corley-Wiciak, Agnieszka Anna</creatorcontrib><creatorcontrib>Corley-Wiciak, Cedric</creatorcontrib><creatorcontrib>Marvin Hartwig Zoellner</creatorcontrib><creatorcontrib>Richter, Carsten</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Virgilio, Michele</creatorcontrib><creatorcontrib>Martín-García, Beatriz</creatorcontrib><creatorcontrib>Spirito, Davide</creatorcontrib><creatorcontrib>Costanza Lucia Manganelli</creatorcontrib><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</description><subject>Band structure of solids</subject><subject>CMOS</subject><subject>Deformation</subject><subject>Emission analysis</subject><subject>Energy gap</subject><subject>Finite element method</subject><subject>Germanium</subject><subject>Intermetallic compounds</subject><subject>Operating temperature</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Potential theory</subject><subject>Robustness (mathematics)</subject><subject>Temperature dependence</subject><subject>Tin</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jb1OwzAYRS0EEqWwMltibYrj33iEAqVSEUOzV47zBVKC49quaN-AmUfkSYgEYrpHukf3InSZk2lOCL32MYYpJZQRwnhxhEZ5IWkmqSLH_yz4KTqLcUOI0IqzEdqWr4AXLkHwnTngCtIHgMOrFEzrJnjl8KwfWpcm2Lgal_DuIZi0C4D7QfMmtabrDvgOPLh68PDt4L0Yj1uH55B_f37tV26Pn1ob-rqNb_EcnTSmi3Dxl2NUPtyXs8ds-TxfzG6WmddFyjTkVnFBpVQaRGHz2ipdqZooMKqSHLjWlamsEILz2lDeSMsaU2hRWduwio3R1e-sD_12BzGtN_0uuOFxTbWQRGpVUPYDrnNeQA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zaitsev, Ignatii</creator><creator>Corley-Wiciak, Agnieszka Anna</creator><creator>Corley-Wiciak, Cedric</creator><creator>Marvin Hartwig Zoellner</creator><creator>Richter, Carsten</creator><creator>Zatterin, Edoardo</creator><creator>Virgilio, Michele</creator><creator>Martín-García, Beatriz</creator><creator>Spirito, Davide</creator><creator>Costanza Lucia Manganelli</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240301</creationdate><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><author>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-9e1c74526679e58c1dc79b7d07ea7b64e499babc55544da24f6c3fa895bccf3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure of solids</topic><topic>CMOS</topic><topic>Deformation</topic><topic>Emission analysis</topic><topic>Energy gap</topic><topic>Finite element method</topic><topic>Germanium</topic><topic>Intermetallic compounds</topic><topic>Operating temperature</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Potential theory</topic><topic>Robustness (mathematics)</topic><topic>Temperature dependence</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, Ignatii</creatorcontrib><creatorcontrib>Corley-Wiciak, Agnieszka Anna</creatorcontrib><creatorcontrib>Corley-Wiciak, Cedric</creatorcontrib><creatorcontrib>Marvin Hartwig Zoellner</creatorcontrib><creatorcontrib>Richter, Carsten</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Virgilio, Michele</creatorcontrib><creatorcontrib>Martín-García, Beatriz</creatorcontrib><creatorcontrib>Spirito, Davide</creatorcontrib><creatorcontrib>Costanza Lucia Manganelli</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, Ignatii</au><au>Corley-Wiciak, Agnieszka Anna</au><au>Corley-Wiciak, Cedric</au><au>Marvin Hartwig Zoellner</au><au>Richter, Carsten</au><au>Zatterin, Edoardo</au><au>Virgilio, Michele</au><au>Martín-García, Beatriz</au><au>Spirito, Davide</au><au>Costanza Lucia Manganelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202300348</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2024-03, Vol.18 (3) |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_2956069782 |
source | Access via Wiley Online Library |
subjects | Band structure of solids CMOS Deformation Emission analysis Energy gap Finite element method Germanium Intermetallic compounds Operating temperature Optoelectronics Photoluminescence Potential theory Robustness (mathematics) Temperature dependence Tin |
title | The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Interplay%20between%20Strain,%20Sn%20Content,%20and%20Temperature%20on%20Spatially%20Dependent%20Bandgap%20in%20Ge1%E2%88%92xSnx%20Microdisks&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Zaitsev,%20Ignatii&rft.date=2024-03-01&rft.volume=18&rft.issue=3&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202300348&rft_dat=%3Cproquest%3E2956069782%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956069782&rft_id=info:pmid/&rfr_iscdi=true |