The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks

Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2024-03, Vol.18 (3)
Hauptverfasser: Zaitsev, Ignatii, Corley-Wiciak, Agnieszka Anna, Corley-Wiciak, Cedric, Marvin Hartwig Zoellner, Richter, Carsten, Zatterin, Edoardo, Virgilio, Michele, Martín-García, Beatriz, Spirito, Davide, Costanza Lucia Manganelli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 18
creator Zaitsev, Ignatii
Corley-Wiciak, Agnieszka Anna
Corley-Wiciak, Cedric
Marvin Hartwig Zoellner
Richter, Carsten
Zatterin, Edoardo
Virgilio, Michele
Martín-García, Beatriz
Spirito, Davide
Costanza Lucia Manganelli
description Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.
doi_str_mv 10.1002/pssr.202300348
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2956069782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956069782</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-9e1c74526679e58c1dc79b7d07ea7b64e499babc55544da24f6c3fa895bccf3b3</originalsourceid><addsrcrecordid>eNo9jb1OwzAYRS0EEqWwMltibYrj33iEAqVSEUOzV47zBVKC49quaN-AmUfkSYgEYrpHukf3InSZk2lOCL32MYYpJZQRwnhxhEZ5IWkmqSLH_yz4KTqLcUOI0IqzEdqWr4AXLkHwnTngCtIHgMOrFEzrJnjl8KwfWpcm2Lgal_DuIZi0C4D7QfMmtabrDvgOPLh68PDt4L0Yj1uH55B_f37tV26Pn1ob-rqNb_EcnTSmi3Dxl2NUPtyXs8ds-TxfzG6WmddFyjTkVnFBpVQaRGHz2ipdqZooMKqSHLjWlamsEILz2lDeSMsaU2hRWduwio3R1e-sD_12BzGtN_0uuOFxTbWQRGpVUPYDrnNeQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956069782</pqid></control><display><type>article</type><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><source>Access via Wiley Online Library</source><creator>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</creator><creatorcontrib>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</creatorcontrib><description>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202300348</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Band structure of solids ; CMOS ; Deformation ; Emission analysis ; Energy gap ; Finite element method ; Germanium ; Intermetallic compounds ; Operating temperature ; Optoelectronics ; Photoluminescence ; Potential theory ; Robustness (mathematics) ; Temperature dependence ; Tin</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2024-03, Vol.18 (3)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaitsev, Ignatii</creatorcontrib><creatorcontrib>Corley-Wiciak, Agnieszka Anna</creatorcontrib><creatorcontrib>Corley-Wiciak, Cedric</creatorcontrib><creatorcontrib>Marvin Hartwig Zoellner</creatorcontrib><creatorcontrib>Richter, Carsten</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Virgilio, Michele</creatorcontrib><creatorcontrib>Martín-García, Beatriz</creatorcontrib><creatorcontrib>Spirito, Davide</creatorcontrib><creatorcontrib>Costanza Lucia Manganelli</creatorcontrib><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</description><subject>Band structure of solids</subject><subject>CMOS</subject><subject>Deformation</subject><subject>Emission analysis</subject><subject>Energy gap</subject><subject>Finite element method</subject><subject>Germanium</subject><subject>Intermetallic compounds</subject><subject>Operating temperature</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Potential theory</subject><subject>Robustness (mathematics)</subject><subject>Temperature dependence</subject><subject>Tin</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jb1OwzAYRS0EEqWwMltibYrj33iEAqVSEUOzV47zBVKC49quaN-AmUfkSYgEYrpHukf3InSZk2lOCL32MYYpJZQRwnhxhEZ5IWkmqSLH_yz4KTqLcUOI0IqzEdqWr4AXLkHwnTngCtIHgMOrFEzrJnjl8KwfWpcm2Lgal_DuIZi0C4D7QfMmtabrDvgOPLh68PDt4L0Yj1uH55B_f37tV26Pn1ob-rqNb_EcnTSmi3Dxl2NUPtyXs8ds-TxfzG6WmddFyjTkVnFBpVQaRGHz2ipdqZooMKqSHLjWlamsEILz2lDeSMsaU2hRWduwio3R1e-sD_12BzGtN_0uuOFxTbWQRGpVUPYDrnNeQA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zaitsev, Ignatii</creator><creator>Corley-Wiciak, Agnieszka Anna</creator><creator>Corley-Wiciak, Cedric</creator><creator>Marvin Hartwig Zoellner</creator><creator>Richter, Carsten</creator><creator>Zatterin, Edoardo</creator><creator>Virgilio, Michele</creator><creator>Martín-García, Beatriz</creator><creator>Spirito, Davide</creator><creator>Costanza Lucia Manganelli</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240301</creationdate><title>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</title><author>Zaitsev, Ignatii ; Corley-Wiciak, Agnieszka Anna ; Corley-Wiciak, Cedric ; Marvin Hartwig Zoellner ; Richter, Carsten ; Zatterin, Edoardo ; Virgilio, Michele ; Martín-García, Beatriz ; Spirito, Davide ; Costanza Lucia Manganelli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-9e1c74526679e58c1dc79b7d07ea7b64e499babc55544da24f6c3fa895bccf3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure of solids</topic><topic>CMOS</topic><topic>Deformation</topic><topic>Emission analysis</topic><topic>Energy gap</topic><topic>Finite element method</topic><topic>Germanium</topic><topic>Intermetallic compounds</topic><topic>Operating temperature</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Potential theory</topic><topic>Robustness (mathematics)</topic><topic>Temperature dependence</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, Ignatii</creatorcontrib><creatorcontrib>Corley-Wiciak, Agnieszka Anna</creatorcontrib><creatorcontrib>Corley-Wiciak, Cedric</creatorcontrib><creatorcontrib>Marvin Hartwig Zoellner</creatorcontrib><creatorcontrib>Richter, Carsten</creatorcontrib><creatorcontrib>Zatterin, Edoardo</creatorcontrib><creatorcontrib>Virgilio, Michele</creatorcontrib><creatorcontrib>Martín-García, Beatriz</creatorcontrib><creatorcontrib>Spirito, Davide</creatorcontrib><creatorcontrib>Costanza Lucia Manganelli</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, Ignatii</au><au>Corley-Wiciak, Agnieszka Anna</au><au>Corley-Wiciak, Cedric</au><au>Marvin Hartwig Zoellner</au><au>Richter, Carsten</au><au>Zatterin, Edoardo</au><au>Virgilio, Michele</au><au>Martín-García, Beatriz</au><au>Spirito, Davide</au><au>Costanza Lucia Manganelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Germanium–tin (GeSn) microdisks are promising structures for complementary metal–oxide–semiconductor‐compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to different lattice deformations associated with mechanical constraints. An experimental and numerical study of Ge1−xSnx microdisk with Sn concentration between 8.5 and 14 at% is reported. Combining finite element method calculations, micro‐Raman and X‐ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro‐photoluminescence experiments, the temperature dependence of the bandgap of Ge1−xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for spatially dependent band structure calculations based on deformation potential theory. It is observed that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at% or 100 K, respectively. The impact of the strain gradient is also analyzed. These findings correlate structural properties to emission wavelength and spectral width of microdisk lasers, thus demonstrating the importance of material‐related consideration on the design of optoelectronic microstructures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202300348</doi></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2024-03, Vol.18 (3)
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2956069782
source Access via Wiley Online Library
subjects Band structure of solids
CMOS
Deformation
Emission analysis
Energy gap
Finite element method
Germanium
Intermetallic compounds
Operating temperature
Optoelectronics
Photoluminescence
Potential theory
Robustness (mathematics)
Temperature dependence
Tin
title The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdisks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Interplay%20between%20Strain,%20Sn%20Content,%20and%20Temperature%20on%20Spatially%20Dependent%20Bandgap%20in%20Ge1%E2%88%92xSnx%20Microdisks&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Zaitsev,%20Ignatii&rft.date=2024-03-01&rft.volume=18&rft.issue=3&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202300348&rft_dat=%3Cproquest%3E2956069782%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956069782&rft_id=info:pmid/&rfr_iscdi=true