Editing Conceptual Knowledge for Large Language Models

Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of edit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Wang, Xiaohan, Mao, Shengyu, Zhang, Ningyu, Deng, Shumin, Yao, Yunzhi, Shen, Yue, Liang, Lei, Gu, Jinjie, Chen, Huajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Xiaohan
Mao, Shengyu
Zhang, Ningyu
Deng, Shumin
Yao, Yunzhi
Shen, Yue
Liang, Lei
Gu, Jinjie
Chen, Huajun
description Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2955956054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955956054</sourcerecordid><originalsourceid>FETCH-proquest_journals_29559560543</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc03JLMnMS1dwzs9LTi0oKU3MUfDOyy_PSU1JT1VIyy9S8EksArJ8EvPSSxOBDN_8lNScYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijeyNDW1NDUzMDUxJk4VAKf3NQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955956054</pqid></control><display><type>article</type><title>Editing Conceptual Knowledge for Large Language Models</title><source>Free E- Journals</source><creator>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</creator><creatorcontrib>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</creatorcontrib><description>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Editing ; Large language models</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Mao, Shengyu</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Deng, Shumin</creatorcontrib><creatorcontrib>Yao, Yunzhi</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Gu, Jinjie</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><title>Editing Conceptual Knowledge for Large Language Models</title><title>arXiv.org</title><description>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</description><subject>Editing</subject><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc03JLMnMS1dwzs9LTi0oKU3MUfDOyy_PSU1JT1VIyy9S8EksArJ8EvPSSxOBDN_8lNScYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijeyNDW1NDUzMDUxJk4VAKf3NQs</recordid><startdate>20240310</startdate><enddate>20240310</enddate><creator>Wang, Xiaohan</creator><creator>Mao, Shengyu</creator><creator>Zhang, Ningyu</creator><creator>Deng, Shumin</creator><creator>Yao, Yunzhi</creator><creator>Shen, Yue</creator><creator>Liang, Lei</creator><creator>Gu, Jinjie</creator><creator>Chen, Huajun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240310</creationdate><title>Editing Conceptual Knowledge for Large Language Models</title><author>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29559560543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Editing</topic><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Mao, Shengyu</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Deng, Shumin</creatorcontrib><creatorcontrib>Yao, Yunzhi</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Gu, Jinjie</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaohan</au><au>Mao, Shengyu</au><au>Zhang, Ningyu</au><au>Deng, Shumin</au><au>Yao, Yunzhi</au><au>Shen, Yue</au><au>Liang, Lei</au><au>Gu, Jinjie</au><au>Chen, Huajun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Editing Conceptual Knowledge for Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2955956054
source Free E- Journals
subjects Editing
Large language models
title Editing Conceptual Knowledge for Large Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Editing%20Conceptual%20Knowledge%20for%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Wang,%20Xiaohan&rft.date=2024-03-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2955956054%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955956054&rft_id=info:pmid/&rfr_iscdi=true