Editing Conceptual Knowledge for Large Language Models
Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of edit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Xiaohan Mao, Shengyu Zhang, Ningyu Deng, Shumin Yao, Yunzhi Shen, Yue Liang, Lei Gu, Jinjie Chen, Huajun |
description | Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2955956054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955956054</sourcerecordid><originalsourceid>FETCH-proquest_journals_29559560543</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc03JLMnMS1dwzs9LTi0oKU3MUfDOyy_PSU1JT1VIyy9S8EksArJ8EvPSSxOBDN_8lNScYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijeyNDW1NDUzMDUxJk4VAKf3NQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955956054</pqid></control><display><type>article</type><title>Editing Conceptual Knowledge for Large Language Models</title><source>Free E- Journals</source><creator>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</creator><creatorcontrib>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</creatorcontrib><description>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Editing ; Large language models</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Mao, Shengyu</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Deng, Shumin</creatorcontrib><creatorcontrib>Yao, Yunzhi</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Gu, Jinjie</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><title>Editing Conceptual Knowledge for Large Language Models</title><title>arXiv.org</title><description>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</description><subject>Editing</subject><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc03JLMnMS1dwzs9LTi0oKU3MUfDOyy_PSU1JT1VIyy9S8EksArJ8EvPSSxOBDN_8lNScYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijeyNDW1NDUzMDUxJk4VAKf3NQs</recordid><startdate>20240310</startdate><enddate>20240310</enddate><creator>Wang, Xiaohan</creator><creator>Mao, Shengyu</creator><creator>Zhang, Ningyu</creator><creator>Deng, Shumin</creator><creator>Yao, Yunzhi</creator><creator>Shen, Yue</creator><creator>Liang, Lei</creator><creator>Gu, Jinjie</creator><creator>Chen, Huajun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240310</creationdate><title>Editing Conceptual Knowledge for Large Language Models</title><author>Wang, Xiaohan ; Mao, Shengyu ; Zhang, Ningyu ; Deng, Shumin ; Yao, Yunzhi ; Shen, Yue ; Liang, Lei ; Gu, Jinjie ; Chen, Huajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29559560543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Editing</topic><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaohan</creatorcontrib><creatorcontrib>Mao, Shengyu</creatorcontrib><creatorcontrib>Zhang, Ningyu</creatorcontrib><creatorcontrib>Deng, Shumin</creatorcontrib><creatorcontrib>Yao, Yunzhi</creatorcontrib><creatorcontrib>Shen, Yue</creatorcontrib><creatorcontrib>Liang, Lei</creatorcontrib><creatorcontrib>Gu, Jinjie</creatorcontrib><creatorcontrib>Chen, Huajun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaohan</au><au>Mao, Shengyu</au><au>Zhang, Ningyu</au><au>Deng, Shumin</au><au>Yao, Yunzhi</au><au>Shen, Yue</au><au>Liang, Lei</au><au>Gu, Jinjie</au><au>Chen, Huajun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Editing Conceptual Knowledge for Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this can inspire further progress in better understanding LLMs. Our project homepage is available at https://zjunlp.github.io/project/ConceptEdit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2955956054 |
source | Free E- Journals |
subjects | Editing Large language models |
title | Editing Conceptual Knowledge for Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Editing%20Conceptual%20Knowledge%20for%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Wang,%20Xiaohan&rft.date=2024-03-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2955956054%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955956054&rft_id=info:pmid/&rfr_iscdi=true |