Richardson extrapolation method for solving the Riesz space fractional diffusion problem

The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2024-05, Vol.40 (3), p.n/a
Hauptverfasser: Qi, Ren‐jun, Sun, Zhi‐zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Numerical methods for partial differential equations
container_volume 40
creator Qi, Ren‐jun
Sun, Zhi‐zhong
description The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.
doi_str_mv 10.1002/num.23076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2955955730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955955730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-5c9cd19d2de0bbd785a7eda8c531a58d02b064d313ce123e4e1e6e972926379e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dt87HZbI5S_IKqUCz0FrLJrN2y26zJVq2_3q3rVRgYBp53ZngQuqRkQglh0-2umTBOZHaERpSoPGEpy47RiMhUJVSo1Sk6i3FDCKWCqhFaLSq7NsFFv8Xw1QXT-tp0VT810K29w6UPOPr6o9q-4W4NeFFB_MaxNRZwGYw9sKbGrirLXTzk2uCLGppzdFKaOsLFXx-j5d3t6-whmb_cP85u5ollQmaJsMo6qhxzQIrCyVwYCc7kVnBqRO4IK0iWOk65Bco4pEAhAyWZYhmXCvgYXQ17-7vvO4id3vhd6F-Kmikh-pKc9NT1QNngYwxQ6jZUjQl7TYk-iNO9OP0rrmenA_tZ1bD_H9TPy6ch8QPn9nDW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955955730</pqid></control><display><type>article</type><title>Richardson extrapolation method for solving the Riesz space fractional diffusion problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qi, Ren‐jun ; Sun, Zhi‐zhong</creator><creatorcontrib>Qi, Ren‐jun ; Sun, Zhi‐zhong</creatorcontrib><description>The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.23076</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Asymptotic series ; Differential equations ; Extrapolation ; Finite differences ; Formulas (mathematics) ; fractional centered difference operator ; fractional Sobolev space ; Operators (mathematics) ; Richardson extrapolation ; space fractional diffusion equation</subject><ispartof>Numerical methods for partial differential equations, 2024-05, Vol.40 (3), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-5c9cd19d2de0bbd785a7eda8c531a58d02b064d313ce123e4e1e6e972926379e3</cites><orcidid>0000-0003-2994-1368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.23076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.23076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qi, Ren‐jun</creatorcontrib><creatorcontrib>Sun, Zhi‐zhong</creatorcontrib><title>Richardson extrapolation method for solving the Riesz space fractional diffusion problem</title><title>Numerical methods for partial differential equations</title><description>The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.</description><subject>Asymptotic series</subject><subject>Differential equations</subject><subject>Extrapolation</subject><subject>Finite differences</subject><subject>Formulas (mathematics)</subject><subject>fractional centered difference operator</subject><subject>fractional Sobolev space</subject><subject>Operators (mathematics)</subject><subject>Richardson extrapolation</subject><subject>space fractional diffusion equation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dt87HZbI5S_IKqUCz0FrLJrN2y26zJVq2_3q3rVRgYBp53ZngQuqRkQglh0-2umTBOZHaERpSoPGEpy47RiMhUJVSo1Sk6i3FDCKWCqhFaLSq7NsFFv8Xw1QXT-tp0VT810K29w6UPOPr6o9q-4W4NeFFB_MaxNRZwGYw9sKbGrirLXTzk2uCLGppzdFKaOsLFXx-j5d3t6-whmb_cP85u5ollQmaJsMo6qhxzQIrCyVwYCc7kVnBqRO4IK0iWOk65Bco4pEAhAyWZYhmXCvgYXQ17-7vvO4id3vhd6F-Kmikh-pKc9NT1QNngYwxQ6jZUjQl7TYk-iNO9OP0rrmenA_tZ1bD_H9TPy6ch8QPn9nDW</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Qi, Ren‐jun</creator><creator>Sun, Zhi‐zhong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2994-1368</orcidid></search><sort><creationdate>202405</creationdate><title>Richardson extrapolation method for solving the Riesz space fractional diffusion problem</title><author>Qi, Ren‐jun ; Sun, Zhi‐zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-5c9cd19d2de0bbd785a7eda8c531a58d02b064d313ce123e4e1e6e972926379e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic series</topic><topic>Differential equations</topic><topic>Extrapolation</topic><topic>Finite differences</topic><topic>Formulas (mathematics)</topic><topic>fractional centered difference operator</topic><topic>fractional Sobolev space</topic><topic>Operators (mathematics)</topic><topic>Richardson extrapolation</topic><topic>space fractional diffusion equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Ren‐jun</creatorcontrib><creatorcontrib>Sun, Zhi‐zhong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Ren‐jun</au><au>Sun, Zhi‐zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Richardson extrapolation method for solving the Riesz space fractional diffusion problem</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2024-05</date><risdate>2024</risdate><volume>40</volume><issue>3</issue><epage>n/a</epage><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>The Richardson extrapolation is widely utilized in numerically solving the differential equations since it enjoys both high accuracy and ease of implementation. For the Riesz space fractional diffusion equation, the fractional centered difference operator is employed to approximate the fractional derivative, then the Richardson extrapolation methods for two difference schemes are constructed with the help of the asymptotic expansions of the discrete solutions. Specifically, for the Crank–Nicolson difference scheme, the extrapolation method contains two extrapolation formulae that achieve the fourth order and the sixth order both in the temporal and spatial directions, respectively. The extrapolation method for the compact difference scheme involves one extrapolation formula by which the sixth order can be obtained when the time step size is proportional to the squares of the space step size. The maximum norm error estimates of the extrapolation solutions are proved by the discrete fractional Sobolev embedding inequalities. The extension to the high dimensional and nonlinear cases is also demonstrated. Numerical results verify the theoretical convergence orders and efficiency of our methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.23076</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2994-1368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2024-05, Vol.40 (3), p.n/a
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2955955730
source Wiley Online Library Journals Frontfile Complete
subjects Asymptotic series
Differential equations
Extrapolation
Finite differences
Formulas (mathematics)
fractional centered difference operator
fractional Sobolev space
Operators (mathematics)
Richardson extrapolation
space fractional diffusion equation
title Richardson extrapolation method for solving the Riesz space fractional diffusion problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Richardson%20extrapolation%20method%20for%20solving%20the%20Riesz%20space%20fractional%20diffusion%20problem&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Qi,%20Ren%E2%80%90jun&rft.date=2024-05&rft.volume=40&rft.issue=3&rft.epage=n/a&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.23076&rft_dat=%3Cproquest_cross%3E2955955730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955955730&rft_id=info:pmid/&rfr_iscdi=true