A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves

The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniquen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2024-05, Vol.40 (3), p.n/a
Hauptverfasser: Abbaszadeh, Mostafa, Bagheri Salec, AliReza, Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Numerical methods for partial differential equations
container_volume 40
creator Abbaszadeh, Mostafa
Bagheri Salec, AliReza
Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem
description The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi‐discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi‐discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function‐finite difference method. The convergence rate and stability of the fully‐discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.
doi_str_mv 10.1002/num.23077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2955955631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955955631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2577-5c247bcfea48b501b9cc0d8b82b956e3996553851700f6b1d83433cb750aa7ba3</originalsourceid><addsrcrecordid>eNp1kM9KJDEQxoMoOLoe9g0CXvTQmnR3Op2jiv_AXUEU9tbkT0Uj3cmYdM8wNx9hT_uAPolxxutCQVHwq6---hD6SckJJaQ89dNwUlaE8y00o0S0RVmXzTaaEV6LgjLxZxftpfRKCKWMihn6d4ajNE72WMnkEraT16MLHh89nF8df7z_tc67EbBx1kIErwEPML4Eg22IOIV-4fwzdsM8hgUYfB6mlJyH9IaHYKDHSze-YIgxw5BGN8i1uPQGG0g6uvl6DvZLyo0yrvBSLiD9QDtW9gkOvvs-erq6fLy4Ke7ur28vzu4KXTLOC6bLmittQdatYoQqoTUxrWpLJVgDlRANY1XLKCfENoqatqqrSivOiJRcyWofHW50s_-3KTvsXsMUfT7ZlYKxXE1FM3W8oXQMKUWw3TzmV-Kqo6T7ir3LsXfr2DN7umGXrofV_8Hu99OvzcYnxGuH4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955955631</pqid></control><display><type>article</type><title>A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves</title><source>Wiley Online Library All Journals</source><creator>Abbaszadeh, Mostafa ; Bagheri Salec, AliReza ; Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</creator><creatorcontrib>Abbaszadeh, Mostafa ; Bagheri Salec, AliReza ; Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</creatorcontrib><description>The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi‐discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi‐discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function‐finite difference method. The convergence rate and stability of the fully‐discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.23077</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Boussinesq equations ; Convergence ; convergence and error analysis ; Finite difference method ; Fixed points (mathematics) ; Fluid dynamics ; improved Boussinesq model (IBM) ; Mathematical analysis ; Radial basis function ; radial basis functions (RBFs) ; RBFs‐finite difference (RBFs‐FD) approach ; Solitary waves ; Stability analysis</subject><ispartof>Numerical methods for partial differential equations, 2024-05, Vol.40 (3), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2577-5c247bcfea48b501b9cc0d8b82b956e3996553851700f6b1d83433cb750aa7ba3</cites><orcidid>0000-0001-6954-3896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.23077$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.23077$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abbaszadeh, Mostafa</creatorcontrib><creatorcontrib>Bagheri Salec, AliReza</creatorcontrib><creatorcontrib>Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</creatorcontrib><title>A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves</title><title>Numerical methods for partial differential equations</title><description>The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi‐discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi‐discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function‐finite difference method. The convergence rate and stability of the fully‐discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.</description><subject>Boussinesq equations</subject><subject>Convergence</subject><subject>convergence and error analysis</subject><subject>Finite difference method</subject><subject>Fixed points (mathematics)</subject><subject>Fluid dynamics</subject><subject>improved Boussinesq model (IBM)</subject><subject>Mathematical analysis</subject><subject>Radial basis function</subject><subject>radial basis functions (RBFs)</subject><subject>RBFs‐finite difference (RBFs‐FD) approach</subject><subject>Solitary waves</subject><subject>Stability analysis</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KJDEQxoMoOLoe9g0CXvTQmnR3Op2jiv_AXUEU9tbkT0Uj3cmYdM8wNx9hT_uAPolxxutCQVHwq6---hD6SckJJaQ89dNwUlaE8y00o0S0RVmXzTaaEV6LgjLxZxftpfRKCKWMihn6d4ajNE72WMnkEraT16MLHh89nF8df7z_tc67EbBx1kIErwEPML4Eg22IOIV-4fwzdsM8hgUYfB6mlJyH9IaHYKDHSze-YIgxw5BGN8i1uPQGG0g6uvl6DvZLyo0yrvBSLiD9QDtW9gkOvvs-erq6fLy4Ke7ur28vzu4KXTLOC6bLmittQdatYoQqoTUxrWpLJVgDlRANY1XLKCfENoqatqqrSivOiJRcyWofHW50s_-3KTvsXsMUfT7ZlYKxXE1FM3W8oXQMKUWw3TzmV-Kqo6T7ir3LsXfr2DN7umGXrofV_8Hu99OvzcYnxGuH4w</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Abbaszadeh, Mostafa</creator><creator>Bagheri Salec, AliReza</creator><creator>Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6954-3896</orcidid></search><sort><creationdate>202405</creationdate><title>A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves</title><author>Abbaszadeh, Mostafa ; Bagheri Salec, AliReza ; Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2577-5c247bcfea48b501b9cc0d8b82b956e3996553851700f6b1d83433cb750aa7ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boussinesq equations</topic><topic>Convergence</topic><topic>convergence and error analysis</topic><topic>Finite difference method</topic><topic>Fixed points (mathematics)</topic><topic>Fluid dynamics</topic><topic>improved Boussinesq model (IBM)</topic><topic>Mathematical analysis</topic><topic>Radial basis function</topic><topic>radial basis functions (RBFs)</topic><topic>RBFs‐finite difference (RBFs‐FD) approach</topic><topic>Solitary waves</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbaszadeh, Mostafa</creatorcontrib><creatorcontrib>Bagheri Salec, AliReza</creatorcontrib><creatorcontrib>Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbaszadeh, Mostafa</au><au>Bagheri Salec, AliReza</au><au>Hatim Aal‐Ezirej, Taghreed Abdul‐Kareem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2024-05</date><risdate>2024</risdate><volume>40</volume><issue>3</issue><epage>n/a</epage><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi‐discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi‐discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function‐finite difference method. The convergence rate and stability of the fully‐discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.23077</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6954-3896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2024-05, Vol.40 (3), p.n/a
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2955955631
source Wiley Online Library All Journals
subjects Boussinesq equations
Convergence
convergence and error analysis
Finite difference method
Fixed points (mathematics)
Fluid dynamics
improved Boussinesq model (IBM)
Mathematical analysis
Radial basis function
radial basis functions (RBFs)
RBFs‐finite difference (RBFs‐FD) approach
Solitary waves
Stability analysis
title A radial basis function (RBF)‐finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20radial%20basis%20function%20(RBF)%E2%80%90finite%20difference%20method%20for%20solving%20improved%20Boussinesq%20model%20with%20error%20estimation%20and%20description%20of%20solitary%20waves&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Abbaszadeh,%20Mostafa&rft.date=2024-05&rft.volume=40&rft.issue=3&rft.epage=n/a&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.23077&rft_dat=%3Cproquest_cross%3E2955955631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955955631&rft_id=info:pmid/&rfr_iscdi=true