Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India
Precise nutrient management for enhancing crop yield is possible through delineating soil management zones. Generally, the fertilizer recommendations followed use a blanket application for a larger area without considering the soil spatial variability. This may lead to low fertilizer application in...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-03, Vol.16 (5), p.2095 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 2095 |
container_title | Sustainability |
container_volume | 16 |
creator | Venugopal, Arunkumar Kannan, Balaji Ganapati, Patil Santosh Krishnan, Ananthi Manikandan, Kaniyaiah Mathiyazhagan, Vijayakumar Jayaraman, Somasundaram |
description | Precise nutrient management for enhancing crop yield is possible through delineating soil management zones. Generally, the fertilizer recommendations followed use a blanket application for a larger area without considering the soil spatial variability. This may lead to low fertilizer application in pockets of less nutrient content and vice versa. Therefore, this study aims to develop soil management zones (MZs) adopting geostatistical and fuzzy clustering techniques in the Alwarthirunagiri block of the Thoothukudi district in Southern India. One hundred and seventy-one surface samples were collected from a study area of 2760 ha. The collected soils were processed and characterized by available macronutrients and micronutrients. The coefficient of variation of the soils varied from low (9.72%) to high (74.60%). Ordinary kriging and semivariogram analysis showed wide variation in the soil characteristics within the study site, with a spatial dependence ranging from moderate to strong. Four management zones were demarcated based on fuzzy performance index and normalized classification entropy using PCA and fuzzy K-means clustering. The study results indicated that the soil properties differed significantly under different management zones and provided potential site-specific fertilizer management options. The management zone map could be useful to the farmers to adopt precise management of nutrients for different zones. |
doi_str_mv | 10.3390/su16052095 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2955914593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786439978</galeid><sourcerecordid>A786439978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-44843dc16a2aa1bd398258ed081195f01db6ea4c0ee8555b5df48d0c6d9f1a623</originalsourceid><addsrcrecordid>eNpVkc1O3DAUhaOqlYoomz6Bpa5AHbDjOBMv0QDtSEAloCzYRDfxTWqU2ME_UsMr9KXraJAAe2Hf4-_4yj5Z9pXRY84lPfGRlVTkVIoP2V5O12zFqKAf3-w_ZwfeP9I0OGeSlXvZv-sYnEYTyD04DY0edJjJFUyTNj0Bo8gZjuBaCEt9BQZ6HBf8wRr0pJnJ-TgNdl5OL-Lz80w2Q_QB3SJoQ25tDH_QGbKx4AMM5AZ7bQ2xHbmDUQ_kGlT8TrZGafiSfepg8Hjwsu5nvy_O7zY_V5e_fmw3p5erlufrsCqKquCqZSXkAKxRXFa5qFDRijEpOspUUyIULUWshBCNUF1RKdqWSnYMypzvZ992907OPkX0oX600ZnUss6lEJIVQvJEHe-oHgastelscNCmqXDUbXp9p5N-uq7Kgku5rpLh8J0hMQH_hh6i9_X29uY9e7RjW2e9d9jVk9Ppn-ea0XoJs34Nk_8HhmaRog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955914593</pqid></control><display><type>article</type><title>Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Venugopal, Arunkumar ; Kannan, Balaji ; Ganapati, Patil Santosh ; Krishnan, Ananthi ; Manikandan, Kaniyaiah ; Mathiyazhagan, Vijayakumar ; Jayaraman, Somasundaram</creator><creatorcontrib>Venugopal, Arunkumar ; Kannan, Balaji ; Ganapati, Patil Santosh ; Krishnan, Ananthi ; Manikandan, Kaniyaiah ; Mathiyazhagan, Vijayakumar ; Jayaraman, Somasundaram</creatorcontrib><description>Precise nutrient management for enhancing crop yield is possible through delineating soil management zones. Generally, the fertilizer recommendations followed use a blanket application for a larger area without considering the soil spatial variability. This may lead to low fertilizer application in pockets of less nutrient content and vice versa. Therefore, this study aims to develop soil management zones (MZs) adopting geostatistical and fuzzy clustering techniques in the Alwarthirunagiri block of the Thoothukudi district in Southern India. One hundred and seventy-one surface samples were collected from a study area of 2760 ha. The collected soils were processed and characterized by available macronutrients and micronutrients. The coefficient of variation of the soils varied from low (9.72%) to high (74.60%). Ordinary kriging and semivariogram analysis showed wide variation in the soil characteristics within the study site, with a spatial dependence ranging from moderate to strong. Four management zones were demarcated based on fuzzy performance index and normalized classification entropy using PCA and fuzzy K-means clustering. The study results indicated that the soil properties differed significantly under different management zones and provided potential site-specific fertilizer management options. The management zone map could be useful to the farmers to adopt precise management of nutrients for different zones.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16052095</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Analysis ; Clustering ; Crop yields ; Fertilizers ; Geostatistics ; Nutrients ; Principal components analysis ; Productivity ; Software ; Soil fertility ; Soil management</subject><ispartof>Sustainability, 2024-03, Vol.16 (5), p.2095</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-44843dc16a2aa1bd398258ed081195f01db6ea4c0ee8555b5df48d0c6d9f1a623</cites><orcidid>0000-0003-3486-4109 ; 0000-0002-6357-3442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Venugopal, Arunkumar</creatorcontrib><creatorcontrib>Kannan, Balaji</creatorcontrib><creatorcontrib>Ganapati, Patil Santosh</creatorcontrib><creatorcontrib>Krishnan, Ananthi</creatorcontrib><creatorcontrib>Manikandan, Kaniyaiah</creatorcontrib><creatorcontrib>Mathiyazhagan, Vijayakumar</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><title>Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India</title><title>Sustainability</title><description>Precise nutrient management for enhancing crop yield is possible through delineating soil management zones. Generally, the fertilizer recommendations followed use a blanket application for a larger area without considering the soil spatial variability. This may lead to low fertilizer application in pockets of less nutrient content and vice versa. Therefore, this study aims to develop soil management zones (MZs) adopting geostatistical and fuzzy clustering techniques in the Alwarthirunagiri block of the Thoothukudi district in Southern India. One hundred and seventy-one surface samples were collected from a study area of 2760 ha. The collected soils were processed and characterized by available macronutrients and micronutrients. The coefficient of variation of the soils varied from low (9.72%) to high (74.60%). Ordinary kriging and semivariogram analysis showed wide variation in the soil characteristics within the study site, with a spatial dependence ranging from moderate to strong. Four management zones were demarcated based on fuzzy performance index and normalized classification entropy using PCA and fuzzy K-means clustering. The study results indicated that the soil properties differed significantly under different management zones and provided potential site-specific fertilizer management options. The management zone map could be useful to the farmers to adopt precise management of nutrients for different zones.</description><subject>Agricultural production</subject><subject>Analysis</subject><subject>Clustering</subject><subject>Crop yields</subject><subject>Fertilizers</subject><subject>Geostatistics</subject><subject>Nutrients</subject><subject>Principal components analysis</subject><subject>Productivity</subject><subject>Software</subject><subject>Soil fertility</subject><subject>Soil management</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkc1O3DAUhaOqlYoomz6Bpa5AHbDjOBMv0QDtSEAloCzYRDfxTWqU2ME_UsMr9KXraJAAe2Hf4-_4yj5Z9pXRY84lPfGRlVTkVIoP2V5O12zFqKAf3-w_ZwfeP9I0OGeSlXvZv-sYnEYTyD04DY0edJjJFUyTNj0Bo8gZjuBaCEt9BQZ6HBf8wRr0pJnJ-TgNdl5OL-Lz80w2Q_QB3SJoQ25tDH_QGbKx4AMM5AZ7bQ2xHbmDUQ_kGlT8TrZGafiSfepg8Hjwsu5nvy_O7zY_V5e_fmw3p5erlufrsCqKquCqZSXkAKxRXFa5qFDRijEpOspUUyIULUWshBCNUF1RKdqWSnYMypzvZ992907OPkX0oX600ZnUss6lEJIVQvJEHe-oHgastelscNCmqXDUbXp9p5N-uq7Kgku5rpLh8J0hMQH_hh6i9_X29uY9e7RjW2e9d9jVk9Ppn-ea0XoJs34Nk_8HhmaRog</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Venugopal, Arunkumar</creator><creator>Kannan, Balaji</creator><creator>Ganapati, Patil Santosh</creator><creator>Krishnan, Ananthi</creator><creator>Manikandan, Kaniyaiah</creator><creator>Mathiyazhagan, Vijayakumar</creator><creator>Jayaraman, Somasundaram</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3486-4109</orcidid><orcidid>https://orcid.org/0000-0002-6357-3442</orcidid></search><sort><creationdate>20240301</creationdate><title>Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India</title><author>Venugopal, Arunkumar ; Kannan, Balaji ; Ganapati, Patil Santosh ; Krishnan, Ananthi ; Manikandan, Kaniyaiah ; Mathiyazhagan, Vijayakumar ; Jayaraman, Somasundaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-44843dc16a2aa1bd398258ed081195f01db6ea4c0ee8555b5df48d0c6d9f1a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural production</topic><topic>Analysis</topic><topic>Clustering</topic><topic>Crop yields</topic><topic>Fertilizers</topic><topic>Geostatistics</topic><topic>Nutrients</topic><topic>Principal components analysis</topic><topic>Productivity</topic><topic>Software</topic><topic>Soil fertility</topic><topic>Soil management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venugopal, Arunkumar</creatorcontrib><creatorcontrib>Kannan, Balaji</creatorcontrib><creatorcontrib>Ganapati, Patil Santosh</creatorcontrib><creatorcontrib>Krishnan, Ananthi</creatorcontrib><creatorcontrib>Manikandan, Kaniyaiah</creatorcontrib><creatorcontrib>Mathiyazhagan, Vijayakumar</creatorcontrib><creatorcontrib>Jayaraman, Somasundaram</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venugopal, Arunkumar</au><au>Kannan, Balaji</au><au>Ganapati, Patil Santosh</au><au>Krishnan, Ananthi</au><au>Manikandan, Kaniyaiah</au><au>Mathiyazhagan, Vijayakumar</au><au>Jayaraman, Somasundaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India</atitle><jtitle>Sustainability</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>2095</spage><pages>2095-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Precise nutrient management for enhancing crop yield is possible through delineating soil management zones. Generally, the fertilizer recommendations followed use a blanket application for a larger area without considering the soil spatial variability. This may lead to low fertilizer application in pockets of less nutrient content and vice versa. Therefore, this study aims to develop soil management zones (MZs) adopting geostatistical and fuzzy clustering techniques in the Alwarthirunagiri block of the Thoothukudi district in Southern India. One hundred and seventy-one surface samples were collected from a study area of 2760 ha. The collected soils were processed and characterized by available macronutrients and micronutrients. The coefficient of variation of the soils varied from low (9.72%) to high (74.60%). Ordinary kriging and semivariogram analysis showed wide variation in the soil characteristics within the study site, with a spatial dependence ranging from moderate to strong. Four management zones were demarcated based on fuzzy performance index and normalized classification entropy using PCA and fuzzy K-means clustering. The study results indicated that the soil properties differed significantly under different management zones and provided potential site-specific fertilizer management options. The management zone map could be useful to the farmers to adopt precise management of nutrients for different zones.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16052095</doi><orcidid>https://orcid.org/0000-0003-3486-4109</orcidid><orcidid>https://orcid.org/0000-0002-6357-3442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-03, Vol.16 (5), p.2095 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2955914593 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agricultural production Analysis Clustering Crop yields Fertilizers Geostatistics Nutrients Principal components analysis Productivity Software Soil fertility Soil management |
title | Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrient%20Variability%20Mapping%20and%20Demarcating%20Management%20Zones%20by%20Employing%20Fuzzy%20Clustering%20in%20Southern%20Coastal%20Region%20of%20Tamil%20Nadu,%20India&rft.jtitle=Sustainability&rft.au=Venugopal,%20Arunkumar&rft.date=2024-03-01&rft.volume=16&rft.issue=5&rft.spage=2095&rft.pages=2095-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16052095&rft_dat=%3Cgale_proqu%3EA786439978%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955914593&rft_id=info:pmid/&rft_galeid=A786439978&rfr_iscdi=true |