Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval

Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-03, Vol.16 (5), p.1818
Hauptverfasser: Fu, Fengjie, Wang, Dianhai, Sun, Meng, Xie, Rui, Cai, Zhengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1818
container_title Sustainability
container_volume 16
creator Fu, Fengjie
Wang, Dianhai
Sun, Meng
Xie, Rui
Cai, Zhengyi
description Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is based on Bayesian deep learning and considers the optimal aggregation time interval. Specifically, this method utilizes the cross-validation mean square error (CVMSE) method to obtain the optimal aggregation time interval and to establish the relationship between the optimal aggregation time interval and the signal cycle. A Bayesian LSTM-CNN prediction model, which extends the LSTM-CNN model under the Bayesian framework to a probabilistic model to better capture the stochasticity and variation in the data, is proposed. Experimental results derived from real-world data demonstrate gathering traffic flow data based on the optimal aggregation time interval significantly enhances the prediction accuracy of the urban interrupted traffic flow model. The optimal aggregation time interval for urban interrupted traffic flow data corresponds to a multiple of the traffic signal control cycle. Comparative experiments indicate that the Bayesian LSTM-CNN prediction model outperforms the state-of-the-art prediction models.
doi_str_mv 10.3390/su16051818
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2955911960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786439697</galeid><sourcerecordid>A786439697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6f24c1aa2fe78856198b00371f578cc0192f995e4f2b37dbfffe15abba9b38333</originalsourceid><addsrcrecordid>eNpVkVFLwzAUhYsoOOZe_AUBnxQ2k2Zpm8c5nQ4Gim7PIU1vSmaX1qRV9-_NNkF383AP4TvJ5Z4ouiR4RCnHt74jCWYkI9lJ1ItxSoYEM3z6T59HA-_XOBSlhJOkF72vXC4tWjqptVFoVtVf6MVBYVRraovupIcC7cUWvAnkPUCDFiCdNbZE09p6U4Db6eemNRtZoUlZOijl3r80G0Bz24L7lNVFdKZl5WHw2_vRavawnD4NF8-P8-lkMVQ0TtthouOxIlLGGtIsYwnhWR4GTolmaaYUJjzWnDMY6zinaZFrrYEwmeeS5zSjlPajq8O7jas_OvCtWNeds-FLEXPGOCE8wYEaHahSViCM1XXrpAqngI1RtQVtwv0kzZIx5QlPg-H6yBCYFr7bUnbei_nb6zF7c2CVq713oEXjwnLcVhAsdmGJv7DoD8EHhZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955911960</pqid></control><display><type>article</type><title>Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Fu, Fengjie ; Wang, Dianhai ; Sun, Meng ; Xie, Rui ; Cai, Zhengyi</creator><creatorcontrib>Fu, Fengjie ; Wang, Dianhai ; Sun, Meng ; Xie, Rui ; Cai, Zhengyi</creatorcontrib><description>Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is based on Bayesian deep learning and considers the optimal aggregation time interval. Specifically, this method utilizes the cross-validation mean square error (CVMSE) method to obtain the optimal aggregation time interval and to establish the relationship between the optimal aggregation time interval and the signal cycle. A Bayesian LSTM-CNN prediction model, which extends the LSTM-CNN model under the Bayesian framework to a probabilistic model to better capture the stochasticity and variation in the data, is proposed. Experimental results derived from real-world data demonstrate gathering traffic flow data based on the optimal aggregation time interval significantly enhances the prediction accuracy of the urban interrupted traffic flow model. The optimal aggregation time interval for urban interrupted traffic flow data corresponds to a multiple of the traffic signal control cycle. Comparative experiments indicate that the Bayesian LSTM-CNN prediction model outperforms the state-of-the-art prediction models.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16051818</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Analysis ; Control systems ; Deep learning ; Kalman filters ; Machine learning ; Mean square errors ; Neural networks ; Roads &amp; highways ; Statistical analysis ; Time series ; Traffic control ; Traffic flow</subject><ispartof>Sustainability, 2024-03, Vol.16 (5), p.1818</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-6f24c1aa2fe78856198b00371f578cc0192f995e4f2b37dbfffe15abba9b38333</cites><orcidid>0000-0001-9178-9809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fu, Fengjie</creatorcontrib><creatorcontrib>Wang, Dianhai</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><title>Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval</title><title>Sustainability</title><description>Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is based on Bayesian deep learning and considers the optimal aggregation time interval. Specifically, this method utilizes the cross-validation mean square error (CVMSE) method to obtain the optimal aggregation time interval and to establish the relationship between the optimal aggregation time interval and the signal cycle. A Bayesian LSTM-CNN prediction model, which extends the LSTM-CNN model under the Bayesian framework to a probabilistic model to better capture the stochasticity and variation in the data, is proposed. Experimental results derived from real-world data demonstrate gathering traffic flow data based on the optimal aggregation time interval significantly enhances the prediction accuracy of the urban interrupted traffic flow model. The optimal aggregation time interval for urban interrupted traffic flow data corresponds to a multiple of the traffic signal control cycle. Comparative experiments indicate that the Bayesian LSTM-CNN prediction model outperforms the state-of-the-art prediction models.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Mean square errors</subject><subject>Neural networks</subject><subject>Roads &amp; highways</subject><subject>Statistical analysis</subject><subject>Time series</subject><subject>Traffic control</subject><subject>Traffic flow</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkVFLwzAUhYsoOOZe_AUBnxQ2k2Zpm8c5nQ4Gim7PIU1vSmaX1qRV9-_NNkF383AP4TvJ5Z4ouiR4RCnHt74jCWYkI9lJ1ItxSoYEM3z6T59HA-_XOBSlhJOkF72vXC4tWjqptVFoVtVf6MVBYVRraovupIcC7cUWvAnkPUCDFiCdNbZE09p6U4Db6eemNRtZoUlZOijl3r80G0Bz24L7lNVFdKZl5WHw2_vRavawnD4NF8-P8-lkMVQ0TtthouOxIlLGGtIsYwnhWR4GTolmaaYUJjzWnDMY6zinaZFrrYEwmeeS5zSjlPajq8O7jas_OvCtWNeds-FLEXPGOCE8wYEaHahSViCM1XXrpAqngI1RtQVtwv0kzZIx5QlPg-H6yBCYFr7bUnbei_nb6zF7c2CVq713oEXjwnLcVhAsdmGJv7DoD8EHhZU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Fu, Fengjie</creator><creator>Wang, Dianhai</creator><creator>Sun, Meng</creator><creator>Xie, Rui</creator><creator>Cai, Zhengyi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9178-9809</orcidid></search><sort><creationdate>20240301</creationdate><title>Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval</title><author>Fu, Fengjie ; Wang, Dianhai ; Sun, Meng ; Xie, Rui ; Cai, Zhengyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6f24c1aa2fe78856198b00371f578cc0192f995e4f2b37dbfffe15abba9b38333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Mean square errors</topic><topic>Neural networks</topic><topic>Roads &amp; highways</topic><topic>Statistical analysis</topic><topic>Time series</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Fengjie</creatorcontrib><creatorcontrib>Wang, Dianhai</creatorcontrib><creatorcontrib>Sun, Meng</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Fengjie</au><au>Wang, Dianhai</au><au>Sun, Meng</au><au>Xie, Rui</au><au>Cai, Zhengyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval</atitle><jtitle>Sustainability</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>1818</spage><pages>1818-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is based on Bayesian deep learning and considers the optimal aggregation time interval. Specifically, this method utilizes the cross-validation mean square error (CVMSE) method to obtain the optimal aggregation time interval and to establish the relationship between the optimal aggregation time interval and the signal cycle. A Bayesian LSTM-CNN prediction model, which extends the LSTM-CNN model under the Bayesian framework to a probabilistic model to better capture the stochasticity and variation in the data, is proposed. Experimental results derived from real-world data demonstrate gathering traffic flow data based on the optimal aggregation time interval significantly enhances the prediction accuracy of the urban interrupted traffic flow model. The optimal aggregation time interval for urban interrupted traffic flow data corresponds to a multiple of the traffic signal control cycle. Comparative experiments indicate that the Bayesian LSTM-CNN prediction model outperforms the state-of-the-art prediction models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16051818</doi><orcidid>https://orcid.org/0000-0001-9178-9809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-03, Vol.16 (5), p.1818
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2955911960
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Analysis
Control systems
Deep learning
Kalman filters
Machine learning
Mean square errors
Neural networks
Roads & highways
Statistical analysis
Time series
Traffic control
Traffic flow
title Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20Traffic%20Flow%20Prediction%20Based%20on%20Bayesian%20Deep%20Learning%20Considering%20Optimal%20Aggregation%20Time%20Interval&rft.jtitle=Sustainability&rft.au=Fu,%20Fengjie&rft.date=2024-03-01&rft.volume=16&rft.issue=5&rft.spage=1818&rft.pages=1818-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16051818&rft_dat=%3Cgale_proqu%3EA786439697%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955911960&rft_id=info:pmid/&rft_galeid=A786439697&rfr_iscdi=true