Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests

In this study, the effect of the Lode angle on failure and plasticity is considered, and a new Lode angle function on plasticity is developed. Meanwhile, a new temperature coefficient function is proposed in this model, and the application of the model is extended to the range from room temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2024-04, Vol.47 (4), p.1361-1378
Hauptverfasser: Li, Bin, Cui, Yi, Wang, Shinian, Gao, Lining, Xu, Zhaohui, Hou, Xinrong, Li, Yafen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 4
container_start_page 1361
container_title Fatigue & fracture of engineering materials & structures
container_volume 47
creator Li, Bin
Cui, Yi
Wang, Shinian
Gao, Lining
Xu, Zhaohui
Hou, Xinrong
Li, Yafen
description In this study, the effect of the Lode angle on failure and plasticity is considered, and a new Lode angle function on plasticity is developed. Meanwhile, a new temperature coefficient function is proposed in this model, and the application of the model is extended to the range from room temperature to 650°C. The tensile specimens of different shapes have been designed to calibrate the parameters of the model. The tensile tests are carried out on the in situ micro‐tensile machine. For the notched tensile specimens at room temperature to validate the constitutive model, numerical results are consistent with experimental ones well, with an error of 7%. Then, the calibrated model is applied to FE simulations to numerically study the fracture phenomena observed in the test. The fracture positions and damage initiation positions of the shear specimen and the notched tensile specimen can be predicted by FE simulations well, while the smooth tensile specimen cannot be predicted well due to real specimens' imperfections. Highlights A coupled plasticity‐damage model is proposed. A new Lode angle function and temperature coefficient function are developed. The experimental and numerical damage evolution and fracture edges are in agreement.
doi_str_mv 10.1111/ffe.14251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2955135919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955135919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2571-ba710ca157619668e349d1ca43c2ea2880c2b0f1345432184a9e6f49ccad75ac3</originalsourceid><addsrcrecordid>eNp1kL9OAzEMxiMEEqUw8AYnMTFcG-ffXUaEWkBUYgGJLUpzCbqqzZUkB3TjEXhGnoSUY8WL5c8_2_KH0DngCeSYOmcnwAiHAzQCJnBJhOSHaFRXXJQVr5-P0UmMK4xBMEpHSM0-tja0G-uTXhfaN4XvN1kwuWr9m42pfdGp7XzRuaLpTWrXtnBBm9QHu9fuGdRFbrf--_MrtqkvkvVxT6U8HE_RkdPraM_-8hg9zWeP17fl4uHm7vpqURrCKyiXugJsNPBKgBSitpTJBoxm1BCrSV1jQ5bYAWWcUQI109IKx6Qxuqm4NnSMLoa929C99vmyWnV98PmkIpJzoFyCzNTlQJnQxRisU9v8uw47BVjt_VPZP_XrX2anA_uen9n9D6r5fDZM_ADNGHJe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955135919</pqid></control><display><type>article</type><title>Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests</title><source>Access via Wiley Online Library</source><creator>Li, Bin ; Cui, Yi ; Wang, Shinian ; Gao, Lining ; Xu, Zhaohui ; Hou, Xinrong ; Li, Yafen</creator><creatorcontrib>Li, Bin ; Cui, Yi ; Wang, Shinian ; Gao, Lining ; Xu, Zhaohui ; Hou, Xinrong ; Li, Yafen</creatorcontrib><description>In this study, the effect of the Lode angle on failure and plasticity is considered, and a new Lode angle function on plasticity is developed. Meanwhile, a new temperature coefficient function is proposed in this model, and the application of the model is extended to the range from room temperature to 650°C. The tensile specimens of different shapes have been designed to calibrate the parameters of the model. The tensile tests are carried out on the in situ micro‐tensile machine. For the notched tensile specimens at room temperature to validate the constitutive model, numerical results are consistent with experimental ones well, with an error of 7%. Then, the calibrated model is applied to FE simulations to numerically study the fracture phenomena observed in the test. The fracture positions and damage initiation positions of the shear specimen and the notched tensile specimen can be predicted by FE simulations well, while the smooth tensile specimen cannot be predicted well due to real specimens' imperfections. Highlights A coupled plasticity‐damage model is proposed. A new Lode angle function and temperature coefficient function are developed. The experimental and numerical damage evolution and fracture edges are in agreement.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14251</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Constitutive models ; constitutive relations ; Crack initiation ; Damage assessment ; Ductile fracture ; Fracture mechanics ; lode angle ; Mathematical models ; Model testing ; Plastic properties ; plasticity‐damage ; Room temperature ; temperature ; Tensile tests</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2024-04, Vol.47 (4), p.1361-1378</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2571-ba710ca157619668e349d1ca43c2ea2880c2b0f1345432184a9e6f49ccad75ac3</cites><orcidid>0000-0002-8795-5234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14251$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14251$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Wang, Shinian</creatorcontrib><creatorcontrib>Gao, Lining</creatorcontrib><creatorcontrib>Xu, Zhaohui</creatorcontrib><creatorcontrib>Hou, Xinrong</creatorcontrib><creatorcontrib>Li, Yafen</creatorcontrib><title>Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>In this study, the effect of the Lode angle on failure and plasticity is considered, and a new Lode angle function on plasticity is developed. Meanwhile, a new temperature coefficient function is proposed in this model, and the application of the model is extended to the range from room temperature to 650°C. The tensile specimens of different shapes have been designed to calibrate the parameters of the model. The tensile tests are carried out on the in situ micro‐tensile machine. For the notched tensile specimens at room temperature to validate the constitutive model, numerical results are consistent with experimental ones well, with an error of 7%. Then, the calibrated model is applied to FE simulations to numerically study the fracture phenomena observed in the test. The fracture positions and damage initiation positions of the shear specimen and the notched tensile specimen can be predicted by FE simulations well, while the smooth tensile specimen cannot be predicted well due to real specimens' imperfections. Highlights A coupled plasticity‐damage model is proposed. A new Lode angle function and temperature coefficient function are developed. The experimental and numerical damage evolution and fracture edges are in agreement.</description><subject>Constitutive models</subject><subject>constitutive relations</subject><subject>Crack initiation</subject><subject>Damage assessment</subject><subject>Ductile fracture</subject><subject>Fracture mechanics</subject><subject>lode angle</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Plastic properties</subject><subject>plasticity‐damage</subject><subject>Room temperature</subject><subject>temperature</subject><subject>Tensile tests</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OAzEMxiMEEqUw8AYnMTFcG-ffXUaEWkBUYgGJLUpzCbqqzZUkB3TjEXhGnoSUY8WL5c8_2_KH0DngCeSYOmcnwAiHAzQCJnBJhOSHaFRXXJQVr5-P0UmMK4xBMEpHSM0-tja0G-uTXhfaN4XvN1kwuWr9m42pfdGp7XzRuaLpTWrXtnBBm9QHu9fuGdRFbrf--_MrtqkvkvVxT6U8HE_RkdPraM_-8hg9zWeP17fl4uHm7vpqURrCKyiXugJsNPBKgBSitpTJBoxm1BCrSV1jQ5bYAWWcUQI109IKx6Qxuqm4NnSMLoa929C99vmyWnV98PmkIpJzoFyCzNTlQJnQxRisU9v8uw47BVjt_VPZP_XrX2anA_uen9n9D6r5fDZM_ADNGHJe</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Li, Bin</creator><creator>Cui, Yi</creator><creator>Wang, Shinian</creator><creator>Gao, Lining</creator><creator>Xu, Zhaohui</creator><creator>Hou, Xinrong</creator><creator>Li, Yafen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8795-5234</orcidid></search><sort><creationdate>202404</creationdate><title>Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests</title><author>Li, Bin ; Cui, Yi ; Wang, Shinian ; Gao, Lining ; Xu, Zhaohui ; Hou, Xinrong ; Li, Yafen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2571-ba710ca157619668e349d1ca43c2ea2880c2b0f1345432184a9e6f49ccad75ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constitutive models</topic><topic>constitutive relations</topic><topic>Crack initiation</topic><topic>Damage assessment</topic><topic>Ductile fracture</topic><topic>Fracture mechanics</topic><topic>lode angle</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Plastic properties</topic><topic>plasticity‐damage</topic><topic>Room temperature</topic><topic>temperature</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Wang, Shinian</creatorcontrib><creatorcontrib>Gao, Lining</creatorcontrib><creatorcontrib>Xu, Zhaohui</creatorcontrib><creatorcontrib>Hou, Xinrong</creatorcontrib><creatorcontrib>Li, Yafen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bin</au><au>Cui, Yi</au><au>Wang, Shinian</au><au>Gao, Lining</au><au>Xu, Zhaohui</au><au>Hou, Xinrong</au><au>Li, Yafen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>4</issue><spage>1361</spage><epage>1378</epage><pages>1361-1378</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>In this study, the effect of the Lode angle on failure and plasticity is considered, and a new Lode angle function on plasticity is developed. Meanwhile, a new temperature coefficient function is proposed in this model, and the application of the model is extended to the range from room temperature to 650°C. The tensile specimens of different shapes have been designed to calibrate the parameters of the model. The tensile tests are carried out on the in situ micro‐tensile machine. For the notched tensile specimens at room temperature to validate the constitutive model, numerical results are consistent with experimental ones well, with an error of 7%. Then, the calibrated model is applied to FE simulations to numerically study the fracture phenomena observed in the test. The fracture positions and damage initiation positions of the shear specimen and the notched tensile specimen can be predicted by FE simulations well, while the smooth tensile specimen cannot be predicted well due to real specimens' imperfections. Highlights A coupled plasticity‐damage model is proposed. A new Lode angle function and temperature coefficient function are developed. The experimental and numerical damage evolution and fracture edges are in agreement.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14251</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8795-5234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2024-04, Vol.47 (4), p.1361-1378
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2955135919
source Access via Wiley Online Library
subjects Constitutive models
constitutive relations
Crack initiation
Damage assessment
Ductile fracture
Fracture mechanics
lode angle
Mathematical models
Model testing
Plastic properties
plasticity‐damage
Room temperature
temperature
Tensile tests
title Experimental and numerical investigation of ductile fracture of K418 on in‐situ tensile tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20investigation%20of%20ductile%20fracture%20of%20K418%20on%20in%E2%80%90situ%20tensile%20tests&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Li,%20Bin&rft.date=2024-04&rft.volume=47&rft.issue=4&rft.spage=1361&rft.epage=1378&rft.pages=1361-1378&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14251&rft_dat=%3Cproquest_cross%3E2955135919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2955135919&rft_id=info:pmid/&rfr_iscdi=true